The possible role of tightly bound adenine nucleotides in oxidative and photosynthetic phosphorylation. 1975

J Rosing, and D A Harris, and E C Slater, and A Kemp

The tightly bound nucleotides of the beff-heart mitochondrial ATPase are released during cold inactivation followed by ammonium sulfate precipitation. During incubation at 0 degrees C the sedimentation coefficient (S20W) of the ATPase first declines from 12.1S to 9S. Prolonged incubation or precipitation with ammonium sulfate leads to dissociation of the 9S component into subunits with S20W of 3.5S. The 9S component still bears bound nucleotides which exchange more extensively and rapidly with added nucleotides than those bound to the active 12.1S component. The bound nucleotides are lost when the 9S form dissociates into the smaller subunits. Thus, firm binding of nucleotides is a property of the quarternary structure of the enzyme. The exchangeability of the nucleotides bound to the ATPase of chloroplast membranes is greatly increased in membranes illuminated in the presence of pyocyanine. Pi can exchange into both the beta and gamma positions of the bound nucleotides when the membranes are energized in the presence of Mg2+. The exchange of the nucleotides and the incorporation of Pi are insensitive to the inhibitor Dio-9 but are inhibited by the uncoupler S13. This inhibition by S13 parallels that of the inhibition of photosynthetic phosphorylation. These findings are discussed with regard to our hypothesis that electron transfer causes release of preformed tightly bound ATP from the ATPase by inducing a conformational change.

UI MeSH Term Description Entries
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D010085 Oxidative Phosphorylation Electron transfer through the cytochrome system liberating free energy which is transformed into high-energy phosphate bonds. Phosphorylation, Oxidative,Oxidative Phosphorylations,Phosphorylations, Oxidative
D010710 Phosphates Inorganic salts of phosphoric acid. Inorganic Phosphate,Phosphates, Inorganic,Inorganic Phosphates,Orthophosphate,Phosphate,Phosphate, Inorganic
D010785 Photophosphorylation The use of light to convert ADP to ATP without the concomitant reduction of dioxygen to water as occurs during OXIDATIVE PHOSPHORYLATION in MITOCHONDRIA. Photosynthetic Phosphorylation,Phosphorylation, Photosynthetic,Phosphorylations, Photosynthetic,Photophosphorylations,Photosynthetic Phosphorylations
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002736 Chloroplasts Plant cell inclusion bodies that contain the photosynthetic pigment CHLOROPHYLL, which is associated with the membrane of THYLAKOIDS. Chloroplasts occur in cells of leaves and young stems of plants. They are also found in some forms of PHYTOPLANKTON such as HAPTOPHYTA; DINOFLAGELLATES; DIATOMS; and CRYPTOPHYTA. Chloroplast,Etioplasts,Etioplast
D004492 Edetic Acid A chelating agent that sequesters a variety of polyvalent cations such as CALCIUM. It is used in pharmaceutical manufacturing and as a food additive. EDTA,Edathamil,Edetates,Ethylenediaminetetraacetic Acid,Tetracemate,Calcium Disodium Edetate,Calcium Disodium Versenate,Calcium Tetacine,Chelaton 3,Chromium EDTA,Copper EDTA,Coprin,Dicobalt EDTA,Disodium Calcitetracemate,Disodium EDTA,Disodium Ethylene Dinitrilotetraacetate,Distannous EDTA,Edetate Disodium Calcium,Edetic Acid, Calcium Salt,Edetic Acid, Calcium, Sodium Salt,Edetic Acid, Chromium Salt,Edetic Acid, Dipotassium Salt,Edetic Acid, Disodium Salt,Edetic Acid, Disodium Salt, Dihydrate,Edetic Acid, Disodium, Magnesium Salt,Edetic Acid, Disodium, Monopotassium Salt,Edetic Acid, Magnesium Salt,Edetic Acid, Monopotassium Salt,Edetic Acid, Monosodium Salt,Edetic Acid, Potassium Salt,Edetic Acid, Sodium Salt,Ethylene Dinitrilotetraacetate,Ethylenedinitrilotetraacetic Acid,Gallium EDTA,Magnesium Disodium EDTA,N,N'-1,2-Ethanediylbis(N-(carboxymethyl)glycine),Potassium EDTA,Stannous EDTA,Versenate,Versene,Acid, Edetic,Acid, Ethylenediaminetetraacetic,Acid, Ethylenedinitrilotetraacetic,Calcitetracemate, Disodium,Dinitrilotetraacetate, Disodium Ethylene,Dinitrilotetraacetate, Ethylene,Disodium Versenate, Calcium,EDTA, Chromium,EDTA, Copper,EDTA, Dicobalt,EDTA, Disodium,EDTA, Distannous,EDTA, Gallium,EDTA, Magnesium Disodium,EDTA, Potassium,EDTA, Stannous,Edetate, Calcium Disodium,Ethylene Dinitrilotetraacetate, Disodium,Tetacine, Calcium,Versenate, Calcium Disodium
D000227 Adenine Nucleotides Adenine Nucleotide,Adenosine Phosphate,Adenosine Phosphates,Nucleotide, Adenine,Nucleotides, Adenine,Phosphate, Adenosine,Phosphates, Adenosine
D000244 Adenosine Diphosphate Adenosine 5'-(trihydrogen diphosphate). An adenine nucleotide containing two phosphate groups esterified to the sugar moiety at the 5'-position. ADP,Adenosine Pyrophosphate,Magnesium ADP,MgADP,Adenosine 5'-Pyrophosphate,5'-Pyrophosphate, Adenosine,ADP, Magnesium,Adenosine 5' Pyrophosphate,Diphosphate, Adenosine,Pyrophosphate, Adenosine

Related Publications

J Rosing, and D A Harris, and E C Slater, and A Kemp
August 1979, Proceedings of the National Academy of Sciences of the United States of America,
J Rosing, and D A Harris, and E C Slater, and A Kemp
August 1984, Biochimica et biophysica acta,
J Rosing, and D A Harris, and E C Slater, and A Kemp
January 1993, Zhurnal evoliutsionnoi biokhimii i fiziologii,
J Rosing, and D A Harris, and E C Slater, and A Kemp
October 1977, Journal of bioenergetics and biomembranes,
J Rosing, and D A Harris, and E C Slater, and A Kemp
January 1976, FEBS letters,
J Rosing, and D A Harris, and E C Slater, and A Kemp
June 1970, Bulletin de la Societe de chimie biologique,
J Rosing, and D A Harris, and E C Slater, and A Kemp
September 1979, The Journal of biological chemistry,
J Rosing, and D A Harris, and E C Slater, and A Kemp
November 1973, Biochemical and biophysical research communications,
Copied contents to your clipboard!