Genetic screen for monitoring hepatitis C virus NS3 serine protease activity. 2003

Miguel Angel Martinez, and Bonaventura Clotet
Fundacio irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Barcelona, Spain. mamartz@ns.hugtip.scs.es

We have developed a genetic system to monitor the activity of the hepatitis C virus (HCV) NS3 serine protease. This genetic system is based on the bacteriophage lambda regulatory circuit where the viral repressor cI is specifically cleaved to initiate the switch from lysogeny to lytic infection. An HCV protease-specific target, NS5A-5B, was inserted into the lambda phage cI repressor. The target specificity of the HCV NS5A-5B repressor was evaluated by coexpression of this repressor with a beta-galactosidase (betagal)-HCV NS3(2-181)/4(21-34) protease construct. Upon infection of Escherichia coli cells containing the two plasmids encoding the cI.HCV5AB-cro and the betagal-HCV NS3(2-181)/4(21-34) protease constructs, lambda phage replicated up to 8,000-fold more efficiently than in cells that did not express the HCV NS3(2-181)/4(21-34) protease. This simple, rapid, and highly specific assay can be used to monitor the activity of the HCV NS3 serine protease, and it has the potential to be used for screening specific inhibitors.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010582 Bacteriophage lambda A temperate inducible phage and type species of the genus lambda-like viruses, in the family SIPHOVIRIDAE. Its natural host is E. coli K12. Its VIRION contains linear double-stranded DNA with single-stranded 12-base 5' sticky ends. The DNA circularizes on infection. Coliphage lambda,Enterobacteria phage lambda,Phage lambda,lambda Phage
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D017361 Viral Nonstructural Proteins Proteins encoded by a VIRAL GENOME that are not structural components of VIRUS PARTICLES. Some of these proteins may play roles within the infected cell during VIRUS REPLICATION or act in regulation of virus replication or VIRUS ASSEMBLY. Nonstructural Proteins, Viral,NS Proteins, Viral,Viral NS Proteins,Viral Non-Structural Proteins,Viral Nonstructural Protein,Viral Nonstructural Proteins NS1,Viral Nonstructural Proteins NS2,Nonstructural Protein, Viral,Viral Non Structural Proteins

Related Publications

Miguel Angel Martinez, and Bonaventura Clotet
April 1997, The Journal of biological chemistry,
Miguel Angel Martinez, and Bonaventura Clotet
March 2001, Journal of viral hepatitis,
Miguel Angel Martinez, and Bonaventura Clotet
January 2017, PloS one,
Miguel Angel Martinez, and Bonaventura Clotet
April 2002, Bioorganic & medicinal chemistry letters,
Miguel Angel Martinez, and Bonaventura Clotet
July 1993, Journal of virology,
Miguel Angel Martinez, and Bonaventura Clotet
February 1999, Antiviral research,
Miguel Angel Martinez, and Bonaventura Clotet
December 1998, Antiviral research,
Miguel Angel Martinez, and Bonaventura Clotet
January 2008, Acta virologica,
Miguel Angel Martinez, and Bonaventura Clotet
August 2006, Bioorganic & medicinal chemistry letters,
Miguel Angel Martinez, and Bonaventura Clotet
September 1999, FEBS letters,
Copied contents to your clipboard!