Potassium channel blockers tetraethylammonium and 4-aminopyridine fail to prevent microglial activation induced by elevated potassium concentration. 2003

Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
Central Electron Microscopic Laboratory, Pécs University, Medical Faculty, Szigeti út 12, H-7643 Pécs, Hungary.

The effect of potassium channel blocker tetraethylammonium and 4-aminopyridine was examined on the elevated K+ concentration-induced microglial activation on rat hippocampal slice preparations. Microglial cells were detected by immunohistochemisty with a monoclonal antibody (OX 42) raised against a type 3 complement receptor. During activation the morphology of the microglial cells changes and the staining intensity increases. The degree of microglial activation was determined by measuring the integrated optical density of the cells. Tetraethylammonium and 4-aminopyridine failed to reduce the elevated K+ concentration-induced microglial activation. Both potassium channel blockers, when applied on the hippocampal slices without K+, caused significantly increased microglial activation as compared to the control slices. In order to check whether the functional alteration of the neuronal population induced by 4-aminopyridine caused the activation of the microglial cells, Schaffer collaterals were cut to block spreading of epileptiform hyperactivity of the CA3 pyramidal cells to the CA1 region. No significant differences were found in microglial activation between the CA3 and CA1 regions, indicating that the effect of 4-aminopyridine on microglial cells is independent of the epileptiform activity caused by the drug.

UI MeSH Term Description Entries
D008297 Male Males
D011188 Potassium An element in the alkali group of metals with an atomic symbol K, atomic number 19, and atomic weight 39.10. It is the chief cation in the intracellular fluid of muscle and other cells. Potassium ion is a strong electrolyte that plays a significant role in the regulation of fluid volume and maintenance of the WATER-ELECTROLYTE BALANCE.
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015761 4-Aminopyridine One of the POTASSIUM CHANNEL BLOCKERS with secondary effect on calcium currents which is used mainly as a research tool and to characterize channel subtypes. 4-Aminopyridine Sustained Release,Dalfampridine,Fampridine-SR,Pymadine,VMI-103,4 Aminopyridine,4 Aminopyridine Sustained Release,Fampridine SR,Sustained Release, 4-Aminopyridine,VMI 103,VMI103
D017208 Rats, Wistar A strain of albino rat developed at the Wistar Institute that has spread widely at other institutions. This has markedly diluted the original strain. Wistar Rat,Rat, Wistar,Wistar Rats
D017628 Microglia The third type of glial cell, along with astrocytes and oligodendrocytes (which together form the macroglia). Microglia vary in appearance depending on developmental stage, functional state, and anatomical location; subtype terms include ramified, perivascular, ameboid, resting, and activated. Microglia clearly are capable of phagocytosis and play an important role in a wide spectrum of neuropathologies. They have also been suggested to act in several other roles including in secretion (e.g., of cytokines and neural growth factors), in immunological processing (e.g., antigen presentation), and in central nervous system development and remodeling. Microglial Cell,Cell, Microglial,Microglial Cells,Microglias
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
July 1997, The Journal of pharmacology and experimental therapeutics,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
December 1987, Brain research,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
March 1987, Neuroscience letters,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
January 1992, Acta physiologica et pharmacologica Bulgarica,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
February 1998, The Canadian journal of cardiology,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
February 1993, Sheng li xue bao : [Acta physiologica Sinica],
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
January 1995, Yao xue xue bao = Acta pharmaceutica Sinica,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
January 2020, Scientific reports,
Hajnalka Abraham, and A Losonczy, and G Czéh, and G Y Lázár
July 1986, Sheng li ke xue jin zhan [Progress in physiology],
Copied contents to your clipboard!