Treadmill walking in incomplete spinal-cord-injured subjects: 2. Factors limiting the maximal speed. 2003

A Pépin, and M Ladouceur, and H Barbeau
Département de Kinanthropologie, Université du Québec à Montréal, Montréal, Québec, Canada.

METHODS Five SCI subjects referred to the laboratory and a convenience sample of five normal volunteer individuals was selected. Stride length and frequency were measured at different walking speeds under three different conditions: preferred, highest possible and lowest possible stepping frequencies. OBJECTIVE To determine which factors are limiting the maximal walking speed in spinal-cord-injured (SCI) individuals. METHODS University-Based Human Gait Laboratory, Montreal, Canada. RESULTS It is shown that maximal stride frequency was the predominant limiting factor of the maximal treadmill-walking speed in SCI subjects. These results were explained in the light of the forced hybrid mass-spring pendulum model. At all speeds, SCI subjects spent longer time in stance, swing and double support phases. The relative time spent in single support is greater at higher walking speed and the difficulty to reduce double support time is a limiting factor. CONCLUSIONS A better understanding of the factors limiting the maximal speed in SCI subjects should help developing rehabilitation interventions oriented towards increasing the control and the capacity of walking. Rehabilitation strategies should put the emphasis on improving the capacity to produce rapid alternate rhythmical stepping movements of the lower limbs. BACKGROUND Neuroscience Network of the Canadian Centre of Excellence.

UI MeSH Term Description Entries
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009068 Movement The act, process, or result of passing from one place or position to another. It differs from LOCOMOTION in that locomotion is restricted to the passing of the whole body from one place to another, while movement encompasses both locomotion but also a change of the position of the whole body or any of its parts. Movement may be used with reference to humans, vertebrate and invertebrate animals, and microorganisms. Differentiate also from MOTOR ACTIVITY, movement associated with behavior. Movements
D005080 Exercise Test Controlled physical activity which is performed in order to allow assessment of physiological functions, particularly cardiovascular and pulmonary, but also aerobic capacity. Maximal (most intense) exercise is usually required but submaximal exercise is also used. Arm Ergometry Test,Bicycle Ergometry Test,Cardiopulmonary Exercise Testing,Exercise Testing,Step Test,Stress Test,Treadmill Test,Cardiopulmonary Exercise Test,EuroFit Tests,Eurofit Test Battery,European Fitness Testing Battery,Fitness Testing,Physical Fitness Testing,Arm Ergometry Tests,Bicycle Ergometry Tests,Cardiopulmonary Exercise Tests,Ergometry Test, Arm,Ergometry Test, Bicycle,Ergometry Tests, Arm,Ergometry Tests, Bicycle,EuroFit Test,Eurofit Test Batteries,Exercise Test, Cardiopulmonary,Exercise Testing, Cardiopulmonary,Exercise Tests,Exercise Tests, Cardiopulmonary,Fitness Testing, Physical,Fitness Testings,Step Tests,Stress Tests,Test Battery, Eurofit,Test, Arm Ergometry,Test, Bicycle Ergometry,Test, Cardiopulmonary Exercise,Test, EuroFit,Test, Exercise,Test, Step,Test, Stress,Test, Treadmill,Testing, Cardiopulmonary Exercise,Testing, Exercise,Testing, Fitness,Testing, Physical Fitness,Tests, Arm Ergometry,Tests, Bicycle Ergometry,Tests, Cardiopulmonary Exercise,Tests, EuroFit,Tests, Exercise,Tests, Step,Tests, Stress,Tests, Treadmill,Treadmill Tests
D005260 Female Females
D005684 Gait Manner or style of walking. Gaits
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000328 Adult A person having attained full growth or maturity. Adults are of 19 through 44 years of age. For a person between 19 and 24 years of age, YOUNG ADULT is available. Adults
D000704 Analysis of Variance A statistical technique that isolates and assesses the contributions of categorical independent variables to variation in the mean of a continuous dependent variable. ANOVA,Analysis, Variance,Variance Analysis,Analyses, Variance,Variance Analyses
D013119 Spinal Cord Injuries Penetrating and non-penetrating injuries to the spinal cord resulting from traumatic external forces (e.g., WOUNDS, GUNSHOT; WHIPLASH INJURIES; etc.). Myelopathy, Traumatic,Injuries, Spinal Cord,Post-Traumatic Myelopathy,Spinal Cord Contusion,Spinal Cord Laceration,Spinal Cord Transection,Spinal Cord Trauma,Contusion, Spinal Cord,Contusions, Spinal Cord,Cord Contusion, Spinal,Cord Contusions, Spinal,Cord Injuries, Spinal,Cord Injury, Spinal,Cord Laceration, Spinal,Cord Lacerations, Spinal,Cord Transection, Spinal,Cord Transections, Spinal,Cord Trauma, Spinal,Cord Traumas, Spinal,Injury, Spinal Cord,Laceration, Spinal Cord,Lacerations, Spinal Cord,Myelopathies, Post-Traumatic,Myelopathies, Traumatic,Myelopathy, Post-Traumatic,Post Traumatic Myelopathy,Post-Traumatic Myelopathies,Spinal Cord Contusions,Spinal Cord Injury,Spinal Cord Lacerations,Spinal Cord Transections,Spinal Cord Traumas,Transection, Spinal Cord,Transections, Spinal Cord,Trauma, Spinal Cord,Traumas, Spinal Cord,Traumatic Myelopathies,Traumatic Myelopathy

Related Publications

A Pépin, and M Ladouceur, and H Barbeau
August 1994, Experimental neurology,
A Pépin, and M Ladouceur, and H Barbeau
October 2000, Behavioural brain research,
A Pépin, and M Ladouceur, and H Barbeau
January 2007, Neurorehabilitation and neural repair,
A Pépin, and M Ladouceur, and H Barbeau
February 2002, Spinal cord,
A Pépin, and M Ladouceur, and H Barbeau
June 2001, Spinal cord,
A Pépin, and M Ladouceur, and H Barbeau
March 2009, Experimental brain research,
A Pépin, and M Ladouceur, and H Barbeau
March 2003, Neurorehabilitation and neural repair,
Copied contents to your clipboard!