Recent advances in alpha1-adrenoceptor pharmacology. 2003

Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
Department of Molecular Cell Pharmacology, National Research Institute for Child Health and Development, 3-35-31, Taishi-do, Setagaya-ku, 154, Tokyo, Japan.

alpha(1)-Adrenergic receptors (ARs) mediate some of the main actions of the natural catecholamines, adrenaline and noradrenaline. They participate in many essential physiological processes, such as sympathetic neurotransmission, modulation of hepatic metabolism, control of vascular tone, cardiac contraction, and the regulation of smooth muscle activity in the genitourinary system. Here, we review recent progress on subtype-specific subcellular localization, participation in signaling cascades, and the pivotal function of alpha(1)-ARs, as delineated through studies on genetically engineered animals. Together, these findings will provide new insights into the physiological and pathophysiological roles of the alpha(1)-ARs.

UI MeSH Term Description Entries
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010597 Pharmacogenetics A branch of genetics which deals with the genetic variability in individual responses to drugs and drug metabolism (BIOTRANSFORMATION). Pharmacogenomics
D005818 Genetic Engineering Directed modification of the gene complement of a living organism by such techniques as altering the DNA, substituting genetic material by means of a virus, transplanting whole nuclei, transplanting cell hybrids, etc. Genetic Intervention,Engineering, Genetic,Intervention, Genetic,Genetic Interventions,Interventions, Genetic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus
D018340 Receptors, Adrenergic, alpha-1 A subclass of alpha-adrenergic receptors that mediate contraction of SMOOTH MUSCLE in a variety of tissues such as ARTERIOLES; VEINS; and the UTERUS. They are usually found on postsynaptic membranes and signal through GQ-G11 G-PROTEINS. Adrenergic alpha-1 Receptors,Receptors, alpha-1 Adrenergic,alpha-1 Adrenergic Receptors,Adrenergic Receptor, alpha-1,Adrenergic alpha-1A Receptors,Adrenergic alpha-1B Receptors,Adrenergic alpha-1D Receptors,Receptor, Adrenergic, alpha-1,Receptor, Adrenergic, alpha-1A,Receptor, Adrenergic, alpha-1B,Receptor, Adrenergic, alpha-1D,Receptors, Adrenergic, alpha-1A,Receptors, Adrenergic, alpha-1B,Receptors, Adrenergic, alpha-1D,alpha 1 Adrenergic Receptor,alpha-1A Adrenergic Receptor,alpha-1B Adrenergic Receptor,alpha-1C Adrenergic Receptor,alpha-1D Adrenergic Receptor,Adrenergic Receptor, alpha 1,Adrenergic Receptor, alpha-1A,Adrenergic Receptor, alpha-1B,Adrenergic Receptor, alpha-1C,Adrenergic Receptor, alpha-1D,Adrenergic Receptors, alpha-1,Adrenergic alpha 1 Receptors,Adrenergic alpha 1A Receptors,Adrenergic alpha 1B Receptors,Adrenergic alpha 1D Receptors,Receptor, alpha-1 Adrenergic,Receptor, alpha-1A Adrenergic,Receptor, alpha-1B Adrenergic,Receptor, alpha-1C Adrenergic,Receptor, alpha-1D Adrenergic,Receptors, Adrenergic alpha-1,Receptors, Adrenergic alpha-1A,Receptors, Adrenergic alpha-1B,Receptors, Adrenergic alpha-1D,Receptors, alpha 1 Adrenergic,alpha 1 Adrenergic Receptors,alpha 1A Adrenergic Receptor,alpha 1B Adrenergic Receptor,alpha 1C Adrenergic Receptor,alpha 1D Adrenergic Receptor,alpha-1 Adrenergic Receptor,alpha-1 Receptors, Adrenergic,alpha-1A Receptors, Adrenergic,alpha-1B Receptors, Adrenergic,alpha-1D Receptors, Adrenergic
D020928 Mitogen-Activated Protein Kinases A superfamily of PROTEIN SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES). Mitogen Activated Protein Kinase,Mitogen-Activated Protein Kinase,Kinase, Mitogen-Activated Protein,Kinases, Mitogen-Activated Protein,Mitogen Activated Protein Kinases,Protein Kinase, Mitogen-Activated,Protein Kinases, Mitogen-Activated

Related Publications

Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
June 2004, Pharmacology & therapeutics,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
January 2007, Current topics in medicinal chemistry,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
January 1999, European urology,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
January 1999, European urology,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
April 1997, Expert opinion on investigational drugs,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
January 1963, The Journal of the Christian Medical Association of India,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
June 1972, Indian journal of medical sciences,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
January 1952, Revista de la Facultad de Ciencias Medicas, Universidad Nacional de Cordoba,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
October 1920, Canadian Medical Association journal,
Taka-aki Koshimizu, and Akito Tanoue, and Akira Hirasawa, and Junji Yamauchi, and Gozoh Tsujimoto
September 1972, Proceedings of the Royal Society of Medicine,
Copied contents to your clipboard!