Human immunodeficiency virus type 1 envelope-mediated neuropathogenesis: targeted gene delivery by a Sindbis virus expression vector. 2003

Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.

Sindbis virus (SIN) expression vectors offer the opportunity for studying neuropathogenesis because of their distinct neural cell tropism. Here, we demonstrate that a recombinant SIN vector expressing EGFP (SINrep5-EGFP) infected multiple cell types including neural cells from several species relevant to lentivirus pathogenesis with high levels of transgene expression. Infection of human neurons by a recombinant SIN (SINrep5-JRFL) expressing the full-length envelope from a neurovirulent human immunodeficiency virus type 1 (HIV-1) strain (JRFL) caused increased cytotoxicity compared to infection with SINrep5-EGFP (P < 0.001), while no cytotoxicity was observed among infected human astrocytes or monocytoid cells. Both human monocyte-derived macrophages (MDM) (P < 0.01) and astrocytes (P < 0.001) infected with SINrep5-JRFL released soluble neurotoxins in contrast to SINrep5-EGFP or mock-infected cells, although this was most prominent for the astrocytes. Implantation of SINrep5-JRFL into the brains of SCID/NOD mice induced neuroinflammation, neuronal loss, and neurobehavioral changes characteristic of HIV-1 infection, which were not present in SINrep5-EGFP or mock-infected animals. Thus SIN expression vectors represent novel tools for studying in vitro and in vivo HIV-1 neuropathogenesis because of their high levels of transgene expression in specific cell types within the brain.

UI MeSH Term Description Entries
D008164 Luminescent Proteins Proteins which are involved in the phenomenon of light emission in living systems. Included are the "enzymatic" and "non-enzymatic" types of system with or without the presence of oxygen or co-factors. Bioluminescent Protein,Bioluminescent Proteins,Luminescent Protein,Photoprotein,Photoproteins,Protein, Bioluminescent,Protein, Luminescent,Proteins, Bioluminescent,Proteins, Luminescent
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005822 Genetic Vectors DNA molecules capable of autonomous replication within a host cell and into which other DNA sequences can be inserted and thus amplified. Many are derived from PLASMIDS; BACTERIOPHAGES; or VIRUSES. They are used for transporting foreign genes into recipient cells. Genetic vectors possess a functional replicator site and contain GENETIC MARKERS to facilitate their selective recognition. Cloning Vectors,Shuttle Vectors,Vectors, Genetic,Cloning Vector,Genetic Vector,Shuttle Vector,Vector, Cloning,Vector, Genetic,Vector, Shuttle,Vectors, Cloning,Vectors, Shuttle
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012845 Sindbis Virus The type species of ALPHAVIRUS normally transmitted to birds by CULEX mosquitoes in Egypt, South Africa, India, Malaya, the Philippines, and Australia. It may be associated with fever in humans. Serotypes (differing by less than 17% in nucleotide sequence) include Babanki, Kyzylagach, and Ockelbo viruses. Babanki virus,Kyzylagach virus,Ockelbo Virus
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015686 Gene Products, env Retroviral proteins, often glycosylated, coded by the envelope (env) gene. They are usually synthesized as protein precursors (POLYPROTEINS) and later cleaved into the final viral envelope glycoproteins by a viral protease. env Gene Products,env Polyproteins,env Protein,env Antigens,env Glycoproteins,env Polyprotein,Antigens, env,Polyprotein, env,Polyproteins, env

Related Publications

Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
November 2002, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
January 1995, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
January 1991, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
January 2004, Journal of neurovirology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
November 1987, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
February 2001, Human gene therapy,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
May 1997, The Journal of general virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
March 1994, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
November 1998, Journal of virology,
Guido van Marle, and Julie Ethier, and Claudia Silva, and Brian A Mac Vicar, and Christopher Power
April 1999, Biochemistry,
Copied contents to your clipboard!