Distribution and serotonin-induced activation of vacuolar-type H+-ATPase in the salivary glands of the blowfly Calliphora vicina. 2003

Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
Institut für Biochemie und Biologie, Zoophysiologie, Universität Potsdam, Lennéstrasse 7a, D-14471 Potsdam, Germany.

Secretory activity in blowfly salivary glands is activated by the hormone serotonin. We have investigated the distribution and activity of two cation pumps that are possibly involved with transepithelial ion transport, i.e. Na(+)/K(+)-ATPase and vacuolar-type H(+)-ATPase (V-ATPase). By immunofluorescence labelling of secretory cells, Na(+)/K(+)-ATPase was localized on the basolateral plasma membrane and V-ATPase on the highly folded apical membrane. Activities of both ATPases were probed in salivary gland homogenates by applying specific inhibitors for these ion pumps, namely ouabain and bafilomycin A(1). In control glands, bafilomycin-A(1)-sensitive V-ATPase activity and ouabain-sensitive Na(+)/K(+)-ATPase activity accounted for 36% and 19%, respectively, of the total ATPase activity. V-ATPase activity increased approximately twofold after stimulation with serotonin, whereas Na(+)/K(+)-ATPase activity was not significantly affected. Biochemical assays provided evidence that the serotonin-induced activation of V-ATPase activity was accompanied by a recruitment of peripheral V(1) subunits from the cytosol to the plasma membrane, indicative of the assembly of V(0)V(1) holoenzymes. These data show that a V-ATPase located in the apical plasma membranes of the secretory cells is a component of the apical "potassium pump" that has been identified previously by physiological approaches. The V-ATPase energizes the apical membrane and provides the primary driving force for fuelling a putative K(+)/nH(+) antiporter and, thus, for fluid secretion. Serotonin-induced assembly of V(0)V(1) holoenzymes might constitute a regulatory mechanism for the control of pump activity.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D004175 Diptera An order of the class Insecta. Wings, when present, number two and distinguish Diptera from other so-called flies, while the halteres, or reduced hindwings, separate Diptera from other insects with one pair of wings. The order includes the families Calliphoridae, Oestridae, Phoridae, SARCOPHAGIDAE, Scatophagidae, Sciaridae, SIMULIIDAE, Tabanidae, Therevidae, Trypetidae, CERATOPOGONIDAE; CHIRONOMIDAE; CULICIDAE; DROSOPHILIDAE; GLOSSINIDAE; MUSCIDAE; TEPHRITIDAE; and PSYCHODIDAE. The larval form of Diptera species are called maggots (see LARVA). Flies, True,Flies,Dipteras,Fly,Fly, True,True Flies,True Fly
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D000254 Sodium-Potassium-Exchanging ATPase An enzyme that catalyzes the active transport system of sodium and potassium ions across the cell wall. Sodium and potassium ions are closely coupled with membrane ATPase which undergoes phosphorylation and dephosphorylation, thereby providing energy for transport of these ions against concentration gradients. ATPase, Sodium, Potassium,Adenosinetriphosphatase, Sodium, Potassium,Na(+)-K(+)-Exchanging ATPase,Na(+)-K(+)-Transporting ATPase,Potassium Pump,Sodium Pump,Sodium, Potassium ATPase,Sodium, Potassium Adenosinetriphosphatase,Sodium-Potassium Pump,Adenosine Triphosphatase, Sodium, Potassium,Na(+) K(+)-Transporting ATPase,Sodium, Potassium Adenosine Triphosphatase,ATPase Sodium, Potassium,ATPase, Sodium-Potassium-Exchanging,Adenosinetriphosphatase Sodium, Potassium,Pump, Potassium,Pump, Sodium,Pump, Sodium-Potassium,Sodium Potassium Exchanging ATPase,Sodium Potassium Pump
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial
D012469 Salivary Glands Glands that secrete SALIVA in the MOUTH. There are three pairs of salivary glands (PAROTID GLAND; SUBLINGUAL GLAND; SUBMANDIBULAR GLAND). Gland, Salivary,Glands, Salivary,Salivary Gland

Related Publications

Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
February 2013, Cell calcium,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
May 2006, The Journal of experimental biology,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
April 1997, The Journal of physiology,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
September 2004, Journal of insect physiology,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
January 2012, Tsitologiia,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
January 1984, Zeitschrift fur Rechtsmedizin. Journal of legal medicine,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
December 1972, Journal of insect physiology,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
July 2000, The Histochemical journal,
Bernhard Zimmermann, and Petra Dames, and Bernd Walz, and Otto Baumann
March 2008, The Journal of experimental biology,
Copied contents to your clipboard!