Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. 2003

Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
Department of Medicine, Washington University, St. Louis, MO 63110, USA.

Electrical uncoupling of cardiac myocytes during ischemia is delayed by ischemic preconditioning. This presumably adaptive response may limit development of arrhythmia substrates. To elucidate responsible mechanisms, we studied isolated, perfused rat hearts subjected to a standard preconditioning protocol of 3 cycles of 3 minutes of global no-flow ischemia each followed by 5 minutes of reperfusion before a 30-minute interval of ischemia. Changes in coupling were monitored by measuring whole-tissue resistance. Changes in phosphorylation and subcellular distribution of connexin43 (Cx43) were defined by quantitative immunoblotting and confocal microscopy. Preconditioning caused a 34% decrease in the maximal rate of uncoupling and delayed the time to plateau in uncoupling. Dephosphorylation of Cx43, known to occur during uncoupling induced by ischemia, was dramatically decreased in preconditioned hearts. Translocation of Cx43 from gap junctions to the cytosol, also known to occur during ischemia, was reduced by >5-fold in preconditioned hearts. The KATP channel blockers glybenclamide and 5-hydroxydecanoate prevented these effects in preconditioned hearts, whereas the KATP channel agonist diazoxide mimicked these effects in nonpreconditioned hearts. Intracellular translocation of Cx43 was blocked, but Cx43 dephosphorylation was not blocked during ischemia in preconditioned hearts treated with the PKC inhibitors chelerythrine and calphostin C. Uncoupling during ischemia was accelerated by PKC and KATP channel inhibition. Thus, delayed uncoupling in preconditioned hearts is likely related to diminished dephosphorylation and intracellular redistribution of Cx43 during prolonged ischemia. Both of these effects are regulated by activation of KATP channels, whereas PKC plays a role in internalization of Cx43.

UI MeSH Term Description Entries
D008297 Male Males
D010477 Perfusion Treatment process involving the injection of fluid into an organ or tissue. Perfusions
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011493 Protein Kinase C An serine-threonine protein kinase that requires the presence of physiological concentrations of CALCIUM and membrane PHOSPHOLIPIDS. The additional presence of DIACYLGLYCEROLS markedly increases its sensitivity to both calcium and phospholipids. The sensitivity of the enzyme can also be increased by PHORBOL ESTERS and it is believed that protein kinase C is the receptor protein of tumor-promoting phorbol esters. Calcium Phospholipid-Dependent Protein Kinase,Calcium-Activated Phospholipid-Dependent Kinase,PKC Serine-Threonine Kinase,Phospholipid-Sensitive Calcium-Dependent Protein Kinase,Protein Kinase M,Calcium Activated Phospholipid Dependent Kinase,Calcium Phospholipid Dependent Protein Kinase,PKC Serine Threonine Kinase,Phospholipid Sensitive Calcium Dependent Protein Kinase,Phospholipid-Dependent Kinase, Calcium-Activated,Serine-Threonine Kinase, PKC
D003981 Diazoxide A benzothiadiazine derivative that is a peripheral vasodilator used for hypertensive emergencies. It lacks diuretic effect, apparently because it lacks a sulfonamide group. Hyperstat,Proglycem
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006321 Heart The hollow, muscular organ that maintains the circulation of the blood. Hearts
D006329 Heart Conduction System An impulse-conducting system composed of modified cardiac muscle, having the power of spontaneous rhythmicity and conduction more highly developed than the rest of the heart. Conduction System, Heart,Conduction Systems, Heart,Heart Conduction Systems,System, Heart Conduction,Systems, Heart Conduction
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015221 Potassium Channels Cell membrane glycoproteins that are selectively permeable to potassium ions. At least eight major groups of K channels exist and they are made up of dozens of different subunits. Ion Channels, Potassium,Ion Channel, Potassium,Potassium Channel,Potassium Ion Channels,Channel, Potassium,Channel, Potassium Ion,Channels, Potassium,Channels, Potassium Ion,Potassium Ion Channel

Related Publications

Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
December 2010, International neurourology journal,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
August 1997, Shock (Augusta, Ga.),
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
August 2007, Journal of bioenergetics and biomembranes,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
December 2018, Journal of molecular and cellular cardiology,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
September 2007, Heart rhythm,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
December 2000, The Annals of thoracic surgery,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
January 2017, Medical hypotheses,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
February 2017, Molecular medicine reports,
Sandeep K Jain, and Richard B Schuessler, and Jeffrey E Saffitz
March 2018, American journal of physiology. Renal physiology,
Copied contents to your clipboard!