Distribution of corticotropin releasing hormone receptor immunoreactivity in the rat hypothalamus: coexpression in neuropeptide Y and dopamine neurons in the arcuate nucleus. 2003

Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006-3499, USA.

An abundance of physiological data suggests an interaction between neuropeptide Y (NPY) and corticotropin-releasing hormone (CRH) in the regulation of endocrine and autonomic functions. Previously, studies in our laboratory have indicated that NPY neurons in the arcuate nucleus of the hypothalamus (ARH) project to and come in close contact with CRH neurons in the paraventricular nucleus of the hypothalamus (PVH). Conversely, it has been demonstrated that the ventromedial portion of the ARH, an area containing NPY neurons, displays CRH receptor binding and CRH receptor mRNA. These data suggest a possible reciprocal feedback regulation between NPY and CRH neurons. The ARH also contains several other populations of neurons that may be targets of the CRH system and express CRH receptors; most notable are tuberoinfundibular dopaminergic neurons (TIDA). The PVH is an important component in the regulation of prolactin secretion and may play a role in the suppression of TIDA activity, which is a critical step in the prolactin stress response. The purpose of the present study was to characterize the distribution and cellular localization of CRH R(1) receptor-like immunoreactivity (CRH R(1)-ir) in the rat hypothalamus and to determine the phenotype of neurons in the ARH that contain CRH R(1)-ir. CRH R(1)-ir was present throughout the rat brain. Hypothalamic regions with the highest levels of immunostaining were the supraoptic nucleus, magnocellular PVH, ARH, and suprachiasmatic nucleus. Double label immunofluorescence was used to demonstrate that CRH R(1)-ir in the ARH was localized to NPY cell bodies. Furthermore, TIDA neurons in the ARH also displayed CRH R(1)-ir. However, despite an abundance of CRH R(1)-ir cells in the ARH, CRH-ir fiber innervation to the ARH was extremely sparse. Therefore, although this study provides neuroanatomical evidence for direct CRH R(1) regulation of ARH NPY and TIDA neurons in the rat, it is not consistent with the idea of a reciprocal feedback loop and suggests the involvement of other CRH-like ligands, such as urocortin.

UI MeSH Term Description Entries
D007031 Hypothalamus Ventral part of the DIENCEPHALON extending from the region of the OPTIC CHIASM to the caudal border of the MAMMILLARY BODIES and forming the inferior and lateral walls of the THIRD VENTRICLE. Lamina Terminalis,Preoptico-Hypothalamic Area,Area, Preoptico-Hypothalamic,Areas, Preoptico-Hypothalamic,Preoptico Hypothalamic Area,Preoptico-Hypothalamic Areas
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009434 Neural Pathways Neural tracts connecting one part of the nervous system with another. Neural Interconnections,Interconnection, Neural,Interconnections, Neural,Neural Interconnection,Neural Pathway,Pathway, Neural,Pathways, Neural
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009478 Neuropeptide Y A 36-amino acid peptide present in many organs and in many sympathetic noradrenergic neurons. It has vasoconstrictor and natriuretic activity and regulates local blood flow, glandular secretion, and smooth muscle activity. The peptide also stimulates feeding and drinking behavior and influences secretion of pituitary hormones. Neuropeptide Y-Like Immunoreactive Peptide,Neuropeptide Tyrosine,Neuropeptide Y Like Immunoreactive Peptide,Tyrosine, Neuropeptide
D003346 Corticotropin-Releasing Hormone A peptide of about 41 amino acids that stimulates the release of ADRENOCORTICOTROPIC HORMONE. CRH is synthesized by neurons in the PARAVENTRICULAR NUCLEUS of the HYPOTHALAMUS. After being released into the pituitary portal circulation, CRH stimulates the release of ACTH from the PITUITARY GLAND. CRH can also be synthesized in other tissues, such as PLACENTA; ADRENAL MEDULLA; and TESTIS. ACTH-Releasing Hormone,CRF-41,Corticotropin-Releasing Factor,Corticotropin-Releasing Hormone-41,ACTH-Releasing Factor,CRF (ACTH),Corticoliberin,Corticotropin-Releasing Factor-41,ACTH Releasing Factor,ACTH Releasing Hormone,Corticotropin Releasing Factor,Corticotropin Releasing Factor 41,Corticotropin Releasing Hormone,Corticotropin Releasing Hormone 41
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001111 Arcuate Nucleus of Hypothalamus A nucleus located in the middle hypothalamus in the most ventral part of the THIRD VENTRICLE near the entrance of the infundibular recess. Its small cells are in close contact with the EPENDYMA. Arcuate Nucleus,Infundibular Nucleus,Hypothalamus Arcuate Nucleus,Nucleus, Arcuate,Nucleus, Infundibular

Related Publications

Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
August 2006, Journal of Nippon Medical School = Nippon Ika Daigaku zasshi,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
December 1988, Neuroscience letters,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
August 1986, Neuroscience letters,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
July 2006, Annals of the New York Academy of Sciences,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
April 1999, Neuroscience letters,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
October 1996, Journal of neuroendocrinology,
Rebecca E Campbell, and Kevin L Grove, and M Susan Smith
October 1996, Brain research,
Copied contents to your clipboard!