Nucleotide analogue binding, catalysis and primer unblocking in the mechanisms of HIV-1 reverse transcriptase-mediated resistance to nucleoside analogues. 2003

Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
Centre National de la Recherche Scientifique et Université d'Aix-Marseille I and II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, ESIL-Case 925, 163 avenue de Luminy, 13288 Marseille cedex 9, France.

Nucleoside analogues play a key role in the fight against HIV-1. Unfortunately, under therapeutic pressure, HIV-1 inevitably develops resistance to these inhibitors. This resistance correlates with specific pol gene mutations giving rise to specific substitutions in reverse transcriptase that are responsible for the loss of efficacy of the corresponding analogue. This work is an overview of the molecular mechanisms of HIV-1 drug resistance as judged by the analysis of chemical reactions at play at the reverse transcriptase active site. One class of mechanism involves nucleotide analogue discrimination either at the binding step or at the catalytic step, the latter being by far the most common mechanism. The other class of mechanism involves repair of the analogue-terminated DNA chain. The mechanisms were elucidated using purified reverse transcriptase and biochemical assays aimed at correlating resistant HIV-1 phenotypes to enzymatic data. The elucidation of these molecular mechanisms of drug-resistant reverse transcriptase is important for effective and rational combination therapies as well as for the conception of second-generation drugs that do not confer nucleotide resistance to reverse transcriptase or are active against pre-existing resistant viruses.

UI MeSH Term Description Entries
D008958 Models, Molecular Models used experimentally or theoretically to study molecular shape, electronic properties, or interactions; includes analogous molecules, computer-generated graphics, and mechanical structures. Molecular Models,Model, Molecular,Molecular Model
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D004260 DNA Repair The removal of DNA LESIONS and/or restoration of intact DNA strands without BASE PAIR MISMATCHES, intrastrand or interstrand crosslinks, or discontinuities in the DNA sugar-phosphate backbones. DNA Damage Response
D015215 Zidovudine A dideoxynucleoside compound in which the 3'-hydroxy group on the sugar moiety has been replaced by an azido group. This modification prevents the formation of phosphodiester linkages which are needed for the completion of nucleic acid chains. The compound is a potent inhibitor of HIV replication, acting as a chain-terminator of viral DNA during reverse transcription. It improves immunologic function, partially reverses the HIV-induced neurological dysfunction, and improves certain other clinical abnormalities associated with AIDS. Its principal toxic effect is dose-dependent suppression of bone marrow, resulting in anemia and leukopenia. AZT (Antiviral),Azidothymidine,3'-Azido-2',3'-Dideoxythymidine,3'-Azido-3'-deoxythymidine,AZT Antiviral,AZT, Antiviral,BW A509U,BWA-509U,Retrovir,3' Azido 2',3' Dideoxythymidine,3' Azido 3' deoxythymidine,Antiviral AZT,BWA 509U,BWA509U
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015751 Genes, pol DNA sequences that form the coding region for retroviral enzymes including reverse transcriptase, protease, and endonuclease/integrase. "pol" is short for polymerase, the enzyme class of reverse transcriptase. pol Genes,pol Gene,Gene, pol
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D018119 Stavudine A dideoxynucleoside analog that inhibits reverse transcriptase and has in vitro activity against HIV. 2',3'-Didehydro-3'-deoxythymidine,D4T,2',3'-Didehydro-2',3'-dideoxythmidine,BMY-27857,Stavudine, Monosodium Salt,Zerit,2',3' Didehydro 3' deoxythymidine,BMY 27857,BMY27857

Related Publications

Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
September 2004, The international journal of biochemistry & cell biology,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
June 2008, Virus research,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
July 1999, Molecular cell,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
November 1998, Proceedings of the National Academy of Sciences of the United States of America,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
January 2011, Molekuliarnaia biologiia,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
June 2005, Journal of molecular biology,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
September 2000, Cellular and molecular life sciences : CMLS,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
May 2012, Journal of virology,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
January 1999, Journal of human virology,
Boulbaba Selmi, and Jérôme Deval, and Joëlle Boretto, and Bruno Canard
March 2007, Current opinion in HIV and AIDS,
Copied contents to your clipboard!