Glucose stimulates the tyrosine phosphorylation of Crk-associated substrate in pancreatic beta-cells. 2003

Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA. konrad.robert@lilly.com

Several years ago, we demonstrated that glucose induced tyrosine phosphorylation of a 125-kDa protein (p125) in pancreatic beta-cells (Konrad, R. J., Dean, R. M., Young, R. A., Bilings, P. C., and Wolf, B. A. (1996) J. Biol. Chem. 271, 24179-24186). Glucose induced p125 tyrosine phosphorylation in beta-TC3 insulinoma cells, beta-HC9 cells, and in freshly isolated rat islets, whereas increased tyrosine phosphorylation was not observed with other fuel secretagogues. Initial efforts to identify p125 were unsuccessful, so a new approach was taken. The protein was purified from betaTC6,F7 cells via an immunodepletion method. After electrophoresis and colloidal Coomassie Blue staining, the area of the gel corresponding to p125 was excised and subjected to tryptic digestion. Afterward, mass spectrometry was performed and the presence of Crk-associated substrate (Cas) was detected. Commercially available antibodies against Cas were obtained and tested directly in beta-cells, confirming glucose-induced tyrosine phosphorylation of Cas. Further experiments demonstrated that in beta-cells the glucose-induced increase in Cas tyrosine phosphorylation occurs immediately and is not accompanied by increased focal adhesion kinase tyrosine phosphorylation. Finally, it is also demonstrated via Western blotting that Cas is present in normal isolated rat islets. Together, these results show that the identity of the previously described p125 beta-cell protein is Cas and that Cas undergoes rapid glucose-induced tyrosine phosphorylation in beta-cells.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007515 Islets of Langerhans Irregular microscopic structures consisting of cords of endocrine cells that are scattered throughout the PANCREAS among the exocrine acini. Each islet is surrounded by connective tissue fibers and penetrated by a network of capillaries. There are four major cell types. The most abundant beta cells (50-80%) secrete INSULIN. Alpha cells (5-20%) secrete GLUCAGON. PP cells (10-35%) secrete PANCREATIC POLYPEPTIDE. Delta cells (~5%) secrete SOMATOSTATIN. Islands of Langerhans,Islet Cells,Nesidioblasts,Pancreas, Endocrine,Pancreatic Islets,Cell, Islet,Cells, Islet,Endocrine Pancreas,Islet Cell,Islet, Pancreatic,Islets, Pancreatic,Langerhans Islands,Langerhans Islets,Nesidioblast,Pancreatic Islet
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D010750 Phosphoproteins Phosphoprotein
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto

Related Publications

Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
June 1997, The Journal of biological chemistry,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
February 1999, Biochemistry,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
June 2005, Molecular cancer research : MCR,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
June 1999, Diabetes,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
March 1995, The Journal of biological chemistry,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
November 1997, The Journal of biological chemistry,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
September 2008, Journal of cellular biochemistry,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
May 1996, Biochemical and biophysical research communications,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
June 2004, Molecular biology of the cell,
Robert J Konrad, and Gerald Gold, and Thomas N Lee, and Robert Workman, and Carol L Broderick, and Michael D Knierman
September 2004, The Journal of biological chemistry,
Copied contents to your clipboard!