Large-scale characterization of genes specific to the larval nervous system in the ascidian Ciona intestinalis. 2003

Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan.

The central and peripheral nervous systems (CNS and PNS) of the ascidian tadpole larva are comparatively simple, consisting of only about 350 cells. However, studies of the expression of neural patterning genes have demonstrated overall similarity between the ascidian CNS and the vertebrate CNS, suggesting that the ascidian CNS is sufficiently complex to be relevant to those of vertebrates. Recent progress in the Ciona intestinalis genome project and cDNA project together with considerable EST information has made Ciona an ideal model for investigating molecular mechanisms underlying the formation and function of the chordate nervous system. Here, we characterized 56 genes specific to the nervous system by determining their full-length cDNA sequences and confirming their spatial expression patterns. These genes included those that function in the nervous systems of other animals, especially those involved in photoreceptor-mediated signaling and neurotransmitter release. Thus, the nervous system-specific genes in Ciona larvae will provide not only probes for determining their function but also clues for exploring the complex network of nervous system-specific genes.

UI MeSH Term Description Entries
D007814 Larva Wormlike or grublike stage, following the egg in the life cycle of insects, worms, and other metamorphosing animals. Maggots,Tadpoles,Larvae,Maggot,Tadpole
D009424 Nervous System Physiological Phenomena Characteristic properties and processes of the NERVOUS SYSTEM as a whole or with reference to the peripheral or the CENTRAL NERVOUS SYSTEM. Nervous System Physiologic Processes,Nervous System Physiological Processes,Nervous System Physiology,Nervous System Physiological Concepts,Nervous System Physiological Phenomenon,Nervous System Physiological Process,Physiology, Nervous System,System Physiology, Nervous
D002938 Ciona intestinalis Vase or tube shaped TUNICATES with a cosmopolitan distribution. Ciona robusta,Vase Tunicate,Yellow Sea Squirt,Sea Squirt, Yellow,Sea Squirts, Yellow,Vase Tunicates,Yellow Sea Squirts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D017403 In Situ Hybridization A technique that localizes specific nucleic acid sequences within intact chromosomes, eukaryotic cells, or bacterial cells through the use of specific nucleic acid-labeled probes. Hybridization in Situ,Hybridization, In Situ,Hybridizations, In Situ,In Situ Hybridizations
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D018076 DNA, Complementary Single-stranded complementary DNA synthesized from an RNA template by the action of RNA-dependent DNA polymerase. cDNA (i.e., complementary DNA, not circular DNA, not C-DNA) is used in a variety of molecular cloning experiments as well as serving as a specific hybridization probe. Complementary DNA,cDNA,cDNA Probes,Probes, cDNA
D020869 Gene Expression Profiling The determination of the pattern of genes expressed at the level of GENETIC TRANSCRIPTION, under specific circumstances or in a specific cell. Gene Expression Analysis,Gene Expression Pattern Analysis,Transcript Expression Analysis,Transcriptome Profiling,Transcriptomics,mRNA Differential Display,Gene Expression Monitoring,Transcriptome Analysis,Analyses, Gene Expression,Analyses, Transcript Expression,Analyses, Transcriptome,Analysis, Gene Expression,Analysis, Transcript Expression,Analysis, Transcriptome,Differential Display, mRNA,Differential Displays, mRNA,Expression Analyses, Gene,Expression Analysis, Gene,Gene Expression Analyses,Gene Expression Monitorings,Gene Expression Profilings,Monitoring, Gene Expression,Monitorings, Gene Expression,Profiling, Gene Expression,Profiling, Transcriptome,Profilings, Gene Expression,Profilings, Transcriptome,Transcript Expression Analyses,Transcriptome Analyses,Transcriptome Profilings,mRNA Differential Displays

Related Publications

Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
March 2007, The Journal of comparative neurology,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
March 2007, The Journal of comparative neurology,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
February 2010, Zoological science,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
August 1998, The Biological bulletin,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
June 1993, The Biological bulletin,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
August 2003, Zoological science,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
July 1991, The Journal of comparative neurology,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
May 2010, Development (Cambridge, England),
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
October 2002, Zoological science,
Yasuaki Mochizuki, and Yutaka Satou, and Nori Satoh
March 1998, Development genes and evolution,
Copied contents to your clipboard!