Anticonvulsant effect of flutamide on seizures induced by pentylenetetrazole: involvement of benzodiazepine receptors. 2003

Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
Neuroscience Center, Shaheed Beheshti University of Medical Sciences, Tehran 13164, Iran.

OBJECTIVE There is some structural similarity between the androgen receptor antagonist, flutamide (Flut) and benzodiazepines (BZDs). We evaluated the possible anticonvulsant effect and interaction of Flut with BZD receptors in common seizure models. METHODS (a) Different groups of mice each were pretreated i.p. with Flut, and after 0.5 h, they received chemoconvulsants [pentylenetetrazole (PTZ), bicuculline, aminophylline, strychnine or kainic acid]. Latency and incidence of a clonic seizure were recorded. (b) Mice were pretreated i.p. with Flut, and after 0.5 h, transauricular electroshock was applied. Occurrence of a tonic seizure was observed. (c) Amygdala-kindled rats were pretreated i.p. with Flut, and 0.5, 1, or 2 h later, they were stimulated at afterdischarge threshold. Then the seizure parameters (afterdischarge duration, seizure severity, and stage 5 duration) were recorded. (d) The effect of Flut on clonic seizure threshold was determined by i.v. infusion of bicuculline or PTZ to different groups of Flut-receiving mice. To determine the possible interaction of Flut with BZD receptors, the flumazenil (FMZ)+Flut effect on clonic seizure threshold was compared with the effect of Flut. (e) Neurotoxicity of Flut was evaluated by rotarod test at 30 min after administration. RESULTS Flut produced a dose-dependent anticonvulsant effect against PTZ-induced seizures [median effective dose (ED50), 67.0 mg/kg]. Moreover, Flut elevated the clonic seizure threshold induced by bicuculline or PTZ. FMZ reversed the effect of Flut on the threshold of PTZ seizures. A median toxic dose (TD50) value of 124.8 mg/kg was obtained for Flut. CONCLUSIONS Flut both blocks PTZ-induced clonic seizures and elevates the threshold of PTZ or bicuculline-induced clonic seizures, through interaction with BZD receptors.

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007274 Injections, Intraperitoneal Forceful administration into the peritoneal cavity of liquid medication, nutrient, or other fluid through a hollow needle piercing the abdominal wall. Intraperitoneal Injections,Injection, Intraperitoneal,Intraperitoneal Injection
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D009048 Motor Skills Performance of complex motor acts. Motor Skill,Skill, Motor,Skills, Motor
D010433 Pentylenetetrazole A pharmaceutical agent that displays activity as a central nervous system and respiratory stimulant. It is considered a non-competitive GAMMA-AMINOBUTYRIC ACID antagonist. Pentylenetetrazole has been used experimentally to study seizure phenomenon and to identify pharmaceuticals that may control seizure susceptibility. Leptazole,Pentamethylenetetrazole,Pentetrazole,Cardiazol,Corasol,Corazol,Corazole,Korazol,Korazole,Metrazol,Metrazole,Pentazol,Pentylenetetrazol
D011292 Premedication Preliminary administration of a drug preceding a diagnostic, therapeutic, or surgical procedure. The commonest types of premedication are antibiotics (ANTIBIOTIC PROPHYLAXIS) and anti-anxiety agents. It does not include PREANESTHETIC MEDICATION. Premedications
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant

Related Publications

Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
November 2010, Epilepsy & behavior : E&B,
Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
June 2022, Drug research,
Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
August 2014, Journal of pharmaceutical sciences,
Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
July 1984, Pharmacology, biochemistry, and behavior,
Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
January 2010, Acta neurobiologiae experimentalis,
Abolhassan Ahmadiani, and Ali Mandgary, and Mohammad Sayyah
January 2020, Basic and clinical neuroscience,
Copied contents to your clipboard!