Amphetamine-modified acoustic startle responding and prepulse inhibition in adult and adolescent alcohol-preferring and -nonpreferring rats. 2003

R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
Institute of Psychiatric Research, Indiana University School of Medicine, 791 Union Drive, Indianapolis, IN 46202-4887, USA. ribell@iupui.edu

Selective breeding has been used to develop the alcohol-preferring (P) and -nonpreferring (NP) rats, with the P rat having lower CNS levels of dopamine (DA) and reduced DA innervation in the nucleus accumbens compared with the NP rat. The acoustic startle response (ASR) and prepulse inhibition (PPI) of the ASR are experimental behaviors altered by DA agonists. We examined whether functional differences in amphetamine (AMPH)-modified ASR and PPI exist between P and NP rats. AMPH [0.0 (saline), 1.0, 2.0, or 4.0 mg/kg] was injected 15 min prior to placement into a startle apparatus. After a 5-min habituation period, rats were given approximately twelve 95-, 105-, or 115-dB white-noise burst (ASR) and PPI trials. As adults, P rats were sensitive to AMPH potentiation of the ASR to a greater extent than NP rats. During adolescence, P and NP rats had similar levels of AMPH-potentiated ASR. As adults, NP rats displayed potentiated, rather than disrupted, PPI at the 1.0-mg/kg dose, whereas P rats displayed the expected disrupted PPI at the 4.0-mg/kg dose. As adolescents, NP rats did not display significant differences in PPI after AMPH, whereas P rats displayed dose-dependent disruption of PPI, which was significant at the 4.0-mg/kg dose. The limited effect of AMPH on increasing the ASR and the presence of AMPH-potentiated PPI at the lowest dose in the adult NP rat suggests reduced functioning of the interactions between DA circuits and the neurocircuitry mediating the ASR and PPI, compared with P rats. However, the neurocircuitry mediating PPI does not appear to be fully developed in the adolescent NP rat. The present findings also indicate that lower levels of DA content and immunoreactive fibers in the P rat may not reflect reduced DA neuronal activity, because the P rat displayed AMPH-potentiated ASR, and, at the highest dose, AMPH disruption of PPI during both adulthood and adolescence.

UI MeSH Term Description Entries
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000161 Acoustic Stimulation Use of sound to elicit a response in the nervous system. Auditory Stimulation,Stimulation, Acoustic,Stimulation, Auditory
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000428 Alcohol Drinking Behaviors associated with the ingesting of ALCOHOLIC BEVERAGES, including social drinking. Alcohol Consumption,Alcohol Intake,Drinking, Alcohol,Alcohol Drinking Habits,Alcohol Drinking Habit,Alcohol Intakes,Consumption, Alcohol,Drinking Habit, Alcohol,Habit, Alcohol Drinking,Habits, Alcohol Drinking,Intake, Alcohol
D000661 Amphetamine A powerful central nervous system stimulant and sympathomimetic. Amphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulation of release of monamines, and inhibiting monoamine oxidase. Amphetamine is also a drug of abuse and a psychotomimetic. The l- and the d,l-forms are included here. The l-form has less central nervous system activity but stronger cardiovascular effects. The d-form is DEXTROAMPHETAMINE. Desoxynorephedrin,Levoamphetamine,Phenopromin,l-Amphetamine,Amfetamine,Amphetamine Sulfate,Amphetamine Sulfate (2:1),Centramina,Fenamine,Mydrial,Phenamine,Thyramine,levo-Amphetamine,Sulfate, Amphetamine,l Amphetamine,levo Amphetamine
D000697 Central Nervous System Stimulants A loosely defined group of drugs that tend to increase behavioral alertness, agitation, or excitation. They work by a variety of mechanisms, but usually not by direct excitation of neurons. The many drugs that have such actions as side effects to their main therapeutic use are not included here. Analeptic,Analeptic Agent,Analeptic Drug,Analeptics,CNS Stimulant,CNS Stimulants,Central Nervous System Stimulant,Central Stimulant,Analeptic Agents,Analeptic Drugs,Central Stimulants,Agent, Analeptic,Agents, Analeptic,Drug, Analeptic,Drugs, Analeptic,Stimulant, CNS,Stimulant, Central,Stimulants, CNS,Stimulants, Central
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013216 Reflex, Startle A complex involuntary response to an unexpected strong stimulus. The reaction involves physical movement away from the stimulus, MUSCLE CONTRACTION and limb flexion, BLINKING, and changes in HEART RATE, BLOOD PRESSURE, and RESPIRATION. Startle Reaction,Acoustic Startle Reflex,Reflex, Moro,Startle Response,Moro Reflex,Reaction, Startle,Reactions, Startle,Reflex, Acoustic Startle,Response, Startle,Responses, Startle,Startle Reactions,Startle Reflex,Startle Reflex, Acoustic,Startle Responses

Related Publications

R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
January 2012, Alcohol and alcoholism (Oxford, Oxfordshire),
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
April 2000, Pharmacology, biochemistry, and behavior,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
July 2006, Psychopharmacology,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
January 2002, Pharmacology, biochemistry, and behavior,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
October 2000, Pharmacology, biochemistry, and behavior,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
June 1997, European journal of pharmacology,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
January 1987, Neurotoxicology and teratology,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
August 2001, European journal of pharmacology,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
October 2004, Behavioural brain research,
R L Bell, and Z A Rodd, and C C Hsu, and L Lumeng, and J M Murphy, and W J McBride
March 2012, Current protocols in mouse biology,
Copied contents to your clipboard!