Basic fibroblast growth factor increases collateral blood flow in spontaneously hypertensive rats. 2003

Sunita Srivastava, and Ronald L Terjung, and H T Yang
Section of Vascular Surgery, University of Michigan, Ann Arbor, MI 48109, USA.

Ischemia-induced angiogenic response is reduced in spontaneously hypertensive rats (SHR). To study whether exogenous basic fibroblast growth factor (bFGF) infusion is effective in expanding collateral circulation in frankly hypertensive SHR, femoral arteries of male SHR (weighing approximately 250 g) were kept intact (nonoccluded control; n = 9) or occluded for 4h(n = 12) or for 16 days with vehicle (n = 14) or bFGF [0.5 (n = 17), 5.0 (n = 13), and 50.0 (n = 14) microg. kg-1. day-1 for 14 days] intraarterially. Maximal collateral-dependent blood flows (BF) to the hindlimbs were determined with 85Sr- and 141Ce-labeled microspheres during running at 20 and 25 m/min (15% grade). Preexercise heart rates (approximately 530 beats/min) and blood pressures (BP; approximately 200 mmHg) were similar across groups except in the high-dose bFGF group, where BP was reduced by approximately 12% (P < 0.05). Femoral artery occlusion for 4 h resulted in approximately 95% reduction of BF in calf muscles [199 +/- 18.7 (nonoccluded group) to 10 +/- 1.0 ml. min-1. 100 g-1; P < 0.001]. BF to calf muscles of the vehicle and low-dose bFGF (0.5 microg. kg-1. day-1) groups increased to 36 +/- 3.2 and 45 +/- 2.0 ml. min-1. 100 g-1, respectively (P < 0.001). bFGF infusion at 5.0 and 50.0 microg. kg-1. day-1 further increased (P < 0.001) BF to calf muscles (62 +/- 4.6 and 62 +/- 2.2 ml. min-1. 100 g-1, respectively). Our results show that bFGF can effectively increase BF in hypertensive rats. The reduced hypertension with high-dose bFGF suggests that a critical signal in arteriogenesis (nitric oxide bioavailability) may be restored. These findings suggest that the dulled endothelial nitric oxide synthase of SHR does not preempt collateral vessel remodeling.

UI MeSH Term Description Entries
D006973 Hypertension Persistently high systemic arterial BLOOD PRESSURE. Based on multiple readings (BLOOD PRESSURE DETERMINATION), hypertension is currently defined as when SYSTOLIC PRESSURE is consistently greater than 140 mm Hg or when DIASTOLIC PRESSURE is consistently 90 mm Hg or more. Blood Pressure, High,Blood Pressures, High,High Blood Pressure,High Blood Pressures
D008297 Male Males
D011918 Rats, Inbred SHR A strain of Rattus norvegicus with elevated blood pressure used as a model for studying hypertension and stroke. Rats, Spontaneously Hypertensive,Rats, SHR,Inbred SHR Rat,Inbred SHR Rats,Rat, Inbred SHR,Rat, SHR,Rat, Spontaneously Hypertensive,SHR Rat,SHR Rat, Inbred,SHR Rats,SHR Rats, Inbred,Spontaneously Hypertensive Rat,Spontaneously Hypertensive Rats
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D003097 Collateral Circulation Maintenance of blood flow to an organ despite obstruction of a principal vessel. Blood flow is maintained through small vessels. Blood Circulation, Collateral,Circulation, Collateral,Collateral Blood Circulation,Collateral Circulation, Blood,Blood Collateral Circulation,Circulation, Blood Collateral,Circulation, Collateral Blood,Collateral Blood Circulations,Collateral Circulations,Collateral Circulations, Blood
D005263 Femoral Artery The main artery of the thigh, a continuation of the external iliac artery. Common Femoral Artery,Arteries, Common Femoral,Arteries, Femoral,Artery, Common Femoral,Artery, Femoral,Common Femoral Arteries,Femoral Arteries,Femoral Arteries, Common,Femoral Artery, Common
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001157 Arterial Occlusive Diseases Pathological processes which result in the partial or complete obstruction of ARTERIES. They are characterized by greatly reduced or absence of blood flow through these vessels. They are also known as arterial insufficiency. Arterial Obstructive Diseases,Arterial Occlusion,Arterial Obstructive Disease,Arterial Occlusions,Arterial Occlusive Disease,Disease, Arterial Obstructive,Disease, Arterial Occlusive,Obstructive Disease, Arterial,Occlusion, Arterial,Occlusive Disease, Arterial
D016222 Fibroblast Growth Factor 2 A single-chain polypeptide growth factor that plays a significant role in the process of WOUND HEALING and is a potent inducer of PHYSIOLOGIC ANGIOGENESIS. Several different forms of the human protein exist ranging from 18-24 kDa in size due to the use of alternative start sites within the fgf-2 gene. It has a 55 percent amino acid residue identity to FIBROBLAST GROWTH FACTOR 1 and has potent heparin-binding activity. The growth factor is an extremely potent inducer of DNA synthesis in a variety of cell types from mesoderm and neuroectoderm lineages. It was originally named basic fibroblast growth factor based upon its chemical properties and to distinguish it from acidic fibroblast growth factor (FIBROBLAST GROWTH FACTOR 1). Basic Fibroblast Growth Factor,Fibroblast Growth Factor, Basic,HBGF-2,Cartilage-Derived Growth Factor,Class II Heparin-Binding Growth Factor,FGF-2,FGF2,Fibroblast Growth Factor-2,Heparin-Binding Growth Factor Class II,Prostate Epithelial Cell Growth Factor,Prostatropin,Cartilage Derived Growth Factor,FGF 2

Related Publications

Sunita Srivastava, and Ronald L Terjung, and H T Yang
July 1996, Circulation research,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
January 2006, Journal of cardiovascular pharmacology,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
January 1997, Neuroscience,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
November 1994, Brain research,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
June 1998, The American journal of physiology,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
September 1984, European journal of pharmacology,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
December 1996, Neuroscience letters,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
January 1994, Acta neuropathologica,
Sunita Srivastava, and Ronald L Terjung, and H T Yang
January 2002, Acta oncologica (Stockholm, Sweden),
Sunita Srivastava, and Ronald L Terjung, and H T Yang
April 1994, The American journal of physiology,
Copied contents to your clipboard!