Insights into IgA-mediated immune responses from the crystal structures of human FcalphaRI and its complex with IgA1-Fc. 2003

Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
Division of Biology 114-96, California Institute of Technology, Pasadena, California 91125, USA.

Immunoglobulin-alpha (IgA)-bound antigens induce immune effector responses by activating the IgA-specific receptor FcalphaRI (CD89) on immune cells. Here we present crystal structures of human FcalphaRI alone and in a complex with the Fc region of IgA1 (Fcalpha). FcalphaRI has two immunoglobulin-like domains that are oriented at approximately right angles to each other. Fcalpha resembles the Fcs of immunoglobulins IgG and IgE, but has differently located interchain disulphide bonds and external rather than interdomain N-linked carbohydrates. Unlike 1:1 FcgammaRIII:IgG and Fc epsilon RI:IgE complexes, two FcalphaRI molecules bind each Fcalpha dimer, one at each Calpha2-Calpha3 junction. The FcalphaRI-binding site on IgA1 overlaps the reported polymeric immunoglobulin receptor (pIgR)-binding site, which might explain why secretory IgA cannot initiate phagocytosis or bind to FcalphaRI-expressing cells in the absence of an integrin co-receptor.

UI MeSH Term Description Entries
D007070 Immunoglobulin A Represents 15-20% of the human serum immunoglobulins, mostly as the 4-chain polymer in humans or dimer in other mammals. Secretory IgA (IMMUNOGLOBULIN A, SECRETORY) is the main immunoglobulin in secretions. IgA,IgA Antibody,IgA1,IgA2,Antibody, IgA
D007073 Immunoglobulin E An immunoglobulin associated with MAST CELLS. Overexpression has been associated with allergic hypersensitivity (HYPERSENSITIVITY, IMMEDIATE). IgE
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007128 Immunoglobulin Fragments Partial immunoglobulin molecules resulting from selective cleavage by proteolytic enzymes or generated through PROTEIN ENGINEERING techniques. Antibody Fragment,Antibody Fragments,Ig Fragment,Ig Fragments,Immunoglobulin Fragment,Fragment, Antibody,Fragment, Ig,Fragment, Immunoglobulin,Fragments, Antibody,Fragments, Ig,Fragments, Immunoglobulin
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011961 Receptors, Fc Molecules found on the surface of some, but not all, B-lymphocytes, T-lymphocytes, and macrophages, which recognize and combine with the Fc (crystallizable) portion of immunoglobulin molecules. Fc Receptors,Fc Receptor,Receptor, Fc
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D015703 Antigens, CD Differentiation antigens residing on mammalian leukocytes. CD stands for cluster of differentiation, which refers to groups of monoclonal antibodies that show similar reactivity with certain subpopulations of antigens of a particular lineage or differentiation stage. The subpopulations of antigens are also known by the same CD designation. CD Antigen,Cluster of Differentiation Antigen,Cluster of Differentiation Marker,Differentiation Antigens, Leukocyte, Human,Leukocyte Differentiation Antigens, Human,Cluster of Differentiation Antigens,Cluster of Differentiation Markers,Antigen Cluster, Differentiation,Antigen, CD,CD Antigens,Differentiation Antigen Cluster,Differentiation Marker Cluster,Marker Cluster, Differentiation

Related Publications

Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
March 2004, Immunology letters,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
May 2003, Infection and immunity,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
September 2013, Proceedings of the National Academy of Sciences of the United States of America,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
October 2008, Biochemistry,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
January 2021, Frontiers in immunology,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
September 2020, Current opinion in HIV and AIDS,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
September 2000, Biochemistry,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
January 2006, Immunobiology,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
January 2018, Communications biology,
Andrew B Herr, and Edward R Ballister, and Pamela J Bjorkman
June 2007, Journal of immunology (Baltimore, Md. : 1950),
Copied contents to your clipboard!