Cytochrome b561 is not fatty acylated but acetylated at amino terminus in chromaffin vesicle membranes: an approach for the identification of posttranslational modification of transmembrane proteins. 2003

Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
Department of Life Science, Graduate School of Science, Himeji Institute of Technology, Akou-gun, Hyogo, Japan.

We examined the nature of the posttranslational modification of bovine cytochrome b(561), a membrane-spanning protein and an essential component of neuroendocrine secretory vesicles. Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF-MS) showed two populations in the partially digested fragments of cytochrome b(561), which were obtained by controlled treatment of cytochrome b(561)-proteoliposomes with trypsin. One population, containing the posttranslationally modified amino-terminal region, showed molecular masses which were by about 40 Da larger than the theoretical molecular masses. The other population, without the modified amino-terminal region, showed a reasonable matching with the theoretical masses. This result suggested that the posttranslational modification occurred only in the amino-terminal region. The amino-terminal peptide was isolated by tryptic peptide mapping followed by treatment with acylamino-acid-releasing enzyme. Amino acid sequence and MALDI-TOF-MS analyses of the amino-terminal peptide showed that the initial Met residue was acetylated. There was no other posttranslational modification in the amino-terminal region, such as covalent fatty acylation through an ester linkage to Ser or Thr residues.

UI MeSH Term Description Entries
D008715 Methionine A sulfur-containing essential L-amino acid that is important in many body functions. L-Methionine,Liquimeth,Methionine, L-Isomer,Pedameth,L-Isomer Methionine,Methionine, L Isomer
D011499 Protein Processing, Post-Translational Any of various enzymatically catalyzed post-translational modifications of PEPTIDES or PROTEINS in the cell of origin. These modifications include carboxylation; HYDROXYLATION; ACETYLATION; PHOSPHORYLATION; METHYLATION; GLYCOSYLATION; ubiquitination; oxidation; proteolysis; and crosslinking and result in changes in molecular weight and electrophoretic motility. Amino Acid Modification, Post-Translational,Post-Translational Modification,Post-Translational Protein Modification,Posttranslational Modification,Protein Modification, Post-Translational,Amino Acid Modification, Posttranslational,Post-Translational Amino Acid Modification,Post-Translational Modifications,Post-Translational Protein Processing,Posttranslational Amino Acid Modification,Posttranslational Modifications,Posttranslational Protein Processing,Protein Processing, Post Translational,Protein Processing, Posttranslational,Amino Acid Modification, Post Translational,Modification, Post-Translational,Modification, Post-Translational Protein,Modification, Posttranslational,Modifications, Post-Translational,Modifications, Post-Translational Protein,Modifications, Posttranslational,Post Translational Amino Acid Modification,Post Translational Modification,Post Translational Modifications,Post Translational Protein Modification,Post Translational Protein Processing,Post-Translational Protein Modifications,Processing, Post-Translational Protein,Processing, Posttranslational Protein,Protein Modification, Post Translational,Protein Modifications, Post-Translational
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003573 Cytochrome b Group Cytochromes (electron-transporting proteins) with protoheme (HEME B) as the prosthetic group. Cytochromes Type b,Cytochromes, Heme b,Group, Cytochrome b,Heme b Cytochromes,Type b, Cytochromes,b Cytochromes, Heme,b Group, Cytochrome
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D000215 Acylation The addition of an organic acid radical into a molecule.
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D019032 Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization A mass spectrometric technique that is used for the analysis of large biomolecules. Analyte molecules are embedded in an excess matrix of small organic molecules that show a high resonant absorption at the laser wavelength used. The matrix absorbs the laser energy, thus inducing a soft disintegration of the sample-matrix mixture into free (gas phase) matrix and analyte molecules and molecular ions. In general, only molecular ions of the analyte molecules are produced, and almost no fragmentation occurs. This makes the method well suited for molecular weight determinations and mixture analysis. Laser Desorption-Ionization Mass Spectrometry, Matrix-Assisted,MALD-MS,MALDI,Mass Spectrometry, Matrix-Assisted Laser Desorption-Ionization,Mass Spectroscopy, Matrix-Assisted Laser Desorption-Ionization,Matrix-Assisted Laser Desorption-Ionization Mass Spectrometry,Spectroscopy, Mass, Matrix-Assisted Laser Desorption-Ionization,MALDI-MS,MS-MALD,SELDI-TOF-MS,Surface Enhanced Laser Desorption Ionization Mass Spectrometry,Laser Desorption Ionization Mass Spectrometry, Matrix Assisted,MALDI MS,Mass Spectrometry, Matrix Assisted Laser Desorption Ionization,Mass Spectroscopy, Matrix Assisted Laser Desorption Ionization,Matrix Assisted Laser Desorption Ionization Mass Spectrometry
D019439 Chromaffin Cells Cells that store epinephrine secretory vesicles. During times of stress, the nervous system signals the vesicles to secrete their hormonal content. Their name derives from their ability to stain a brownish color with chromic salts. Characteristically, they are located in the adrenal medulla and paraganglia (PARAGANGLIA, CHROMAFFIN) of the sympathetic nervous system. Cell, Chromaffin,Cells, Chromaffin,Chromaffin Cell

Related Publications

Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
September 1990, The Journal of biological chemistry,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
January 1984, Archives of biochemistry and biophysics,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
July 2003, Biochemistry,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
January 1980, Neuroscience,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
September 1992, The Journal of biological chemistry,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
April 1984, The Journal of biological chemistry,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
October 1997, Prostaglandins, leukotrienes, and essential fatty acids,
Mariko Nakamura, and Fusako Takeuchi, and Motonari Tsubaki
May 1987, Journal of virology,
Copied contents to your clipboard!