Defective membrane systems in dystrophic skeletal muscle of the UM-X7.1 strain of genetically myopathic hamster. 1975

N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin

1. The function of mitochondria, sarcotubular membranes (heavy microsomes), sarcolemma and myofibrils from the hind-leg skeletal muscle of about 60- and 150-day-old normal and myopathic (UM-X7.1) hamsters was examined. 2. The mitochondrial calcium uptake as well as mitochondrial phosphorylation and respiratory rates were lower in 60-day-old myopathic skeletal muscle, unlike 150-day-old myopathic animals, when pyruvate-malate and glutamate-malate were used as substrates. However, mitochondria from 150-day-old myopathic animals showed depressed glutamate-dependent respiratory and phosphorylation rates and succinate-supported initial rate of calcium uptake. 3. The microsomal calcium-uptake, but not calcium-binding, and Ca2+-stimulated adenosine triphosphatase (ATPase) activity of the 150-day-old myopathic skeletal muscle were lower than the control values. Although microsomal calcium-binding, calcium-uptake and ATPase activities of the 60-day-old myopathic muscle were not depressed significantly, the initial rate of calcium uptake was less than the control. 4. The sarcolemmal Ca2+-ATPase, but not Mg2+-ATPase or Na+ +K+-ATPase, activity was higher in 60-day-old myopathic muscle whereas the activities of all these enzymes from 150-day-old myopathic animals were higher than the control. On the other hand, the Na+ +K+-ATPase activities from 60- and 150-day-old myopathic animals were inhibited by ouabain to a lesser extent in comparison with the respective control values. 5. The myofibrillar Ca2+-ATPase and Mg2+-ATPase activities as well as inhibition of Mg2+-ATPase due to Na+ and K+ in myopathic muscle were no different from the control values. 6. The results reported here give further support to the view that different membrane systems of the dystrophic muscle are defective.

UI MeSH Term Description Entries
D008861 Microsomes Artifactual vesicles formed from the endoplasmic reticulum when cells are disrupted. They are isolated by differential centrifugation and are composed of three structural features: rough vesicles, smooth vesicles, and ribosomes. Numerous enzyme activities are associated with the microsomal fraction. (Glick, Glossary of Biochemistry and Molecular Biology, 1990; from Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) Microsome
D008931 Mitochondria, Muscle Mitochondria of skeletal and smooth muscle. It does not include myocardial mitochondria for which MITOCHONDRIA, HEART is available. Sarcosomes,Mitochondrion, Muscle,Muscle Mitochondria,Muscle Mitochondrion,Sarcosome
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D009137 Muscular Dystrophy, Animal MUSCULAR DYSTROPHY that occurs in VERTEBRATE animals. Animal Muscular Dystrophies,Animal Muscular Dystrophy,Dystrophies, Animal Muscular,Dystrophy, Animal Muscular,Muscular Dystrophies, Animal
D009210 Myofibrils The long cylindrical contractile organelles of STRIATED MUSCLE cells composed of ACTIN FILAMENTS; MYOSIN filaments; and other proteins organized in arrays of repeating units called SARCOMERES . Myofilaments,Myofibril,Myofilament
D010042 Ouabain A cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like DIGITALIS. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-EXCHANGING ATPASE. Acocantherin,G-Strophanthin,Acolongifloroside K,G Strophanthin
D010101 Oxygen Consumption The rate at which oxygen is used by a tissue; microliters of oxygen STPD used per milligram of tissue per hour; the rate at which oxygen enters the blood from alveolar gas, equal in the steady state to the consumption of oxygen by tissue metabolism throughout the body. (Stedman, 25th ed, p346) Consumption, Oxygen,Consumptions, Oxygen,Oxygen Consumptions
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
November 1977, Investigative ophthalmology & visual science,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
June 1984, Biochemical and biophysical research communications,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
February 1974, Research communications in chemical pathology and pharmacology,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
May 2001, Okajimas folia anatomica Japonica,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
May 1972, Canadian journal of biochemistry,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
January 1982, Muscle & nerve,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
January 1987, Muscle & nerve,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
January 1979, Enzyme,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
February 1973, Biochemical medicine,
N S Dhalla, and A Singh, and S L Lee, and M B Anand, and A M Bernatsky, and G Jasmin
January 1999, Journal of electron microscopy,
Copied contents to your clipboard!