Potential drug targets on the HIV-1 envelope glycoproteins, gp120 and gp41. 2003

Li Huang, and Linda Zhang, and Chin Ho Chen
Department of Microbiology, Meharry Medical College, Nashville, TN 37208, USA.

HIV-1 entry is an attractive target for anti-HIV-1 therapy. However, there are no entry inhibitors approved for the clinical treatment of HIV-1 infection. This is likely to be changed in the near future since promising HIV-1 entry inhibitors, such as T20 and some chemokine receptor antagonists, are in the pipeline to join the repertoire of anti-HIV-1 therapeutics. This review will focus on what might be potential targets on the key components of the viral entry machinery, gp120 and gp41. These two molecules are the viral proteins responsible for HIV-1 entry. Binding to CD4 induces a series of structural changes in gp120 and allows it to interact with chemokine receptors. The receptor binding eventually triggers conformational changes in gp41, which result in the formation of a fusion active molecule to attack the cell membrane. The structural and functional motifs that operate this delicate fusion machinery could become the Achilles' heel of the virus.

UI MeSH Term Description Entries
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014779 Virus Replication The process of intracellular viral multiplication, consisting of the synthesis of PROTEINS; NUCLEIC ACIDS; and sometimes LIPIDS, and their assembly into a new infectious particle. Viral Replication,Replication, Viral,Replication, Virus,Replications, Viral,Replications, Virus,Viral Replications,Virus Replications
D015497 HIV-1 The type species of LENTIVIRUS and the etiologic agent of AIDS. It is characterized by its cytopathic effect and affinity for the T4-lymphocyte. Human immunodeficiency virus 1,HIV-I,Human Immunodeficiency Virus Type 1,Immunodeficiency Virus Type 1, Human
D015658 HIV Infections Includes the spectrum of human immunodeficiency virus infections that range from asymptomatic seropositivity, thru AIDS-related complex (ARC), to acquired immunodeficiency syndrome (AIDS). HTLV-III Infections,HTLV-III-LAV Infections,T-Lymphotropic Virus Type III Infections, Human,HIV Coinfection,Coinfection, HIV,Coinfections, HIV,HIV Coinfections,HIV Infection,HTLV III Infections,HTLV III LAV Infections,HTLV-III Infection,HTLV-III-LAV Infection,Infection, HIV,Infection, HTLV-III,Infection, HTLV-III-LAV,Infections, HIV,Infections, HTLV-III,Infections, HTLV-III-LAV,T Lymphotropic Virus Type III Infections, Human
D015699 HIV Envelope Protein gp120 External envelope protein of the human immunodeficiency virus which is encoded by the HIV env gene. It has a molecular weight of 120 kDa and contains numerous glycosylation sites. Gp120 binds to cells expressing CD4 cell-surface antigens, most notably T4-lymphocytes and monocytes/macrophages. Gp120 has been shown to interfere with the normal function of CD4 and is at least partly responsible for the cytopathic effect of HIV. Envelope Glycoprotein gp120, HIV,HTLV-III gp120,env Protein gp120, HIV,gp120(HIV),HIV Envelope Glycoprotein gp120,gp120 Envelope Glycoprotein, HIV,HTLV III gp120,gp120, HTLV-III
D015700 HIV Envelope Protein gp41 Transmembrane envelope protein of the HUMAN IMMUNODEFICIENCY VIRUS which is encoded by the HIV env gene. It has a molecular weight of 41,000 and is glycosylated. The N-terminal part of gp41 is thought to be involved in CELL FUSION with the CD4 ANTIGENS of T4 LYMPHOCYTES, leading to syncytial formation. Gp41 is one of the most common HIV antigens detected by IMMUNOBLOTTING. Envelope Protein gp41, HIV,HIV Transmembrane Protein gp41,HTLV-III gp41,env Protein gp41, HIV,gp41(HIV),gp41 Envelope Protein, HIV

Related Publications

Li Huang, and Linda Zhang, and Chin Ho Chen
March 2004, Retrovirology,
Li Huang, and Linda Zhang, and Chin Ho Chen
January 1995, AIDS (London, England),
Li Huang, and Linda Zhang, and Chin Ho Chen
September 2008, Journal of molecular modeling,
Li Huang, and Linda Zhang, and Chin Ho Chen
December 2004, Virology,
Li Huang, and Linda Zhang, and Chin Ho Chen
January 2000, Microbiology and immunology,
Li Huang, and Linda Zhang, and Chin Ho Chen
August 2004, Preparative biochemistry & biotechnology,
Li Huang, and Linda Zhang, and Chin Ho Chen
February 2008, Journal of molecular biology,
Li Huang, and Linda Zhang, and Chin Ho Chen
December 2015, European journal of medicinal chemistry,
Li Huang, and Linda Zhang, and Chin Ho Chen
August 2004, AIDS research and human retroviruses,
Copied contents to your clipboard!