Central administration of the neurotensin receptor antagonist SR48692 attenuates vacuous chewing movements in a rodent model of tardive dyskinesia. 2003

S E McCormick, and A J Stoessl
Pacific Parkinson's Research Centre, Faculty of Medicine, University of British Columbia,Vancouver BC V6T 2B5, Canada.

Tardive dyskinesia is a movement disorder that develops in 20-30% of patients treated with chronic neuroleptics. Whilst the pathogenesis of tardive dyskinesia remains unclear, altered expression of neuropeptides in the basal ganglia has been implicated in its emergence. The peptide neurotensin is expressed in both dopamine D1 receptor-bearing neurons of the direct striatonigral pathway and dopamine D2 receptor-bearing neurons of the indirect striatopallidal pathway. Increased levels of striatal neurotensin messenger RNA (mRNA) are reported following chronic neuroleptic therapy. Chronic treatment with the typical antipsychotic haloperidol elicits neurotensin immunoreactivity in a large number of striatopallidal and a modest number of striatonigral projection neurons, whilst treatment with the potent dopamine releaser, methamphetamine, induces intense neurotensin immunoreactivity in striatonigral projection neurons. In order to determine whether increased levels of striatal neurotensin mRNA in the direct striatonigral or the indirect striatopallidal pathway play a more influential role in the development of tardive dyskinesia, we explored the effects of a specific neurotensin antagonist in a rodent model (vacuous chewing movements [VCMs] induced by chronic neuroleptics). Three groups of animals received injections of fluphenazine decanoate (25 mg/kg) or its vehicle sesame oil every 3 weeks for at least 18 weeks. They were then surgically implanted with bilateral guide cannulae aimed at the striatum, the substantia nigra pars reticulata, or the globus pallidus respectively. After recovery, animals were infused with 2-[(1-(7-chloro-4-quinolinyl)-5-(2,6-imethoxyphenyl)pyrazol-3-yl)carbonylamino]tricyclo(3.3.1.1.(3.7))decan-2-carboxylic acid (SR48692; 0.25, 0.50, and 1.0 nmol/microl), or its vehicle (10% dimethyl sulfoxide [DMSO] in saline) and observed for 60 min. Intra-striatal, intra-nigral or intra-pallidal infusion of SR48692 attenuated neuroleptic-induced VCMs. These findings lend further support to a role for neurotensin in the development of VCMs but do not clarify which pathway plays a more important role. Thus, treatments that reduce or prevent the effects of increased neurotensin expression and release may be useful in the management of tardive dyskinesia.

UI MeSH Term Description Entries
D008297 Male Males
D008409 Mastication The act and process of chewing and grinding food in the mouth. Chewing
D011355 Prodrugs A compound that, on administration, must undergo chemical conversion by metabolic processes before becoming the pharmacologically active drug for which it is a prodrug. Drug Precursor,Drug Precursors,Pro-Drug,Prodrug,Pro-Drugs,Precursor, Drug,Precursors, Drug,Pro Drug,Pro Drugs
D011720 Pyrazoles Azoles of two nitrogens at the 1,2 positions, next to each other, in contrast with IMIDAZOLES in which they are at the 1,3 positions.
D011804 Quinolines
D011897 Random Allocation A process involving chance used in therapeutic trials or other research endeavor for allocating experimental subjects, human or animal, between treatment and control groups, or among treatment groups. It may also apply to experiments on inanimate objects. Randomization,Allocation, Random
D003342 Corpus Striatum Striped GRAY MATTER and WHITE MATTER consisting of the NEOSTRIATUM and paleostriatum (GLOBUS PALLIDUS). It is located in front of and lateral to the THALAMUS in each cerebral hemisphere. The gray substance is made up of the CAUDATE NUCLEUS and the lentiform nucleus (the latter consisting of the GLOBUS PALLIDUS and PUTAMEN). The WHITE MATTER is the INTERNAL CAPSULE. Lenticular Nucleus,Lentiform Nucleus,Lentiform Nuclei,Nucleus Lentiformis,Lentiformis, Nucleus,Nuclei, Lentiform,Nucleus, Lenticular,Nucleus, Lentiform,Striatum, Corpus
D004195 Disease Models, Animal Naturally-occurring or experimentally-induced animal diseases with pathological processes analogous to human diseases. Animal Disease Model,Animal Disease Models,Disease Model, Animal
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004409 Dyskinesia, Drug-Induced Abnormal movements, including HYPERKINESIS; HYPOKINESIA; TREMOR; and DYSTONIA, associated with the use of certain medications or drugs. Muscles of the face, trunk, neck, and extremities are most commonly affected. Tardive dyskinesia refers to abnormal hyperkinetic movements of the muscles of the face, tongue, and neck associated with the use of neuroleptic agents (see ANTIPSYCHOTIC AGENTS). (Adams et al., Principles of Neurology, 6th ed, p1199) Dyskinesia, Medication-Induced,Medication-Induced Dyskinesia,Drug-Induced Dyskinesia,Drug-Induced Dyskinesias,Dyskinesia, Drug Induced,Dyskinesia, Medication Induced,Dyskinesias, Drug-Induced,Dyskinesias, Medication-Induced,Medication Induced Dyskinesia,Medication-Induced Dyskinesias

Related Publications

S E McCormick, and A J Stoessl
May 2011, European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology,
S E McCormick, and A J Stoessl
January 1990, Pharmacological research,
S E McCormick, and A J Stoessl
April 1995, Neuropharmacology,
S E McCormick, and A J Stoessl
January 2017, Progress in neuro-psychopharmacology & biological psychiatry,
S E McCormick, and A J Stoessl
October 1993, Movement disorders : official journal of the Movement Disorder Society,
Copied contents to your clipboard!