Involvement of H2O2 in superoxide-dismutase-induced enhancement of endothelium-dependent relaxation in rabbit mesenteric resistance artery. 2003

Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
Department of Cellular and Molecular Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan. titoh@med.nagoya-cu.ac.jp

1 The mechanism underlying the enhancement by superoxide dismutase (SOD) of endothelium-dependent relaxation was investigated in rabbit mesenteric resistance arteries. 2 SOD (200 U ml(-1)) increased the production of H(2)O(2) in smooth muscle cells (as indicated by the use of an H(2)O(2)-sensitive fluorescent dye). 3 Neither SOD nor catalase (400 U ml(-1)) modified either the resting membrane potential or the hyperpolarization induced by acetylcholine (ACh, 1 micro M) in smooth muscle cells. 4 In arteries constricted with noradrenaline, the endothelium-dependent relaxation induced by ACh (0.01-1 micro M) was enhanced by SOD (200 U ml(-1)) (P<0.01). This action of SOD was inhibited by L-N(G)-nitroarginine (nitric oxide (NO)-synthase inhibitor) but not by either charybdotoxin+apamin (Ca(2+)-activated-K(+)-channel blockers) or diclofenac (cyclooxygenase inhibitor). 5 Neither ascorbate (50 micro M) nor tiron (0.3 mM), superoxide scavengers, had any effect on the ACh-induced relaxation, but each attenuated the enhancing effect of SOD on the ACh-induced relaxation. Similarly, catalase (400 U ml(-1)) inhibited the effect of SOD without changing the ACh-induced relaxation. 6 In endothelium-denuded strips constricted with noradrenaline, SOD enhanced the relaxation induced by the NO donor 1-hydroxy-2-oxo-3-(N-methyl-3-aminopropyl)-3-methyl-1-triazene (NOC-7) (P<0.05). Ascorbate and catalase each attenuated this effect of SOD. 7 H(2)O(2) (1 micro M) enhanced the relaxation on the noradrenaline contraction induced by NOC-7 and that induced by 8-bromo-cGMP, a membrane-permeable analogue of guanosine 3',5' cyclic monophosphate (cGMP). 8 SOD had no effect on cGMP production, whether measured in endothelium-intact strips following an application of ACh (0.1 micro M) or in endothelium-denuded strips following an application of NOC-7 (0.1 micro M). 9 It is suggested that in rabbit mesenteric resistance arteries, SOD increases the ACh-induced, endothelium-dependent relaxation by enhancing the action of NO in the smooth muscle via its H(2)O(2)-producing action (rather than via a superoxide-scavenging action).

UI MeSH Term Description Entries
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D004730 Endothelium, Vascular Single pavement layer of cells which line the luminal surface of the entire vascular system and regulate the transport of macromolecules and blood components. Capillary Endothelium,Vascular Endothelium,Capillary Endotheliums,Endothelium, Capillary,Endotheliums, Capillary,Endotheliums, Vascular,Vascular Endotheliums
D006152 Cyclic GMP Guanosine cyclic 3',5'-(hydrogen phosphate). A guanine nucleotide containing one phosphate group which is esterified to the sugar moiety in both the 3'- and 5'-positions. It is a cellular regulatory agent and has been described as a second messenger. Its levels increase in response to a variety of hormones, including acetylcholine, insulin, and oxytocin and it has been found to activate specific protein kinases. (From Merck Index, 11th ed) Guanosine Cyclic 3',5'-Monophosphate,Guanosine Cyclic 3,5 Monophosphate,Guanosine Cyclic Monophosphate,Guanosine Cyclic-3',5'-Monophosphate,3',5'-Monophosphate, Guanosine Cyclic,Cyclic 3',5'-Monophosphate, Guanosine,Cyclic Monophosphate, Guanosine,Cyclic-3',5'-Monophosphate, Guanosine,GMP, Cyclic,Guanosine Cyclic 3',5' Monophosphate,Monophosphate, Guanosine Cyclic
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D000109 Acetylcholine A neurotransmitter found at neuromuscular junctions, autonomic ganglia, parasympathetic effector junctions, a subset of sympathetic effector junctions, and at many sites in the central nervous system. 2-(Acetyloxy)-N,N,N-trimethylethanaminium,Acetilcolina Cusi,Acetylcholine Bromide,Acetylcholine Chloride,Acetylcholine Fluoride,Acetylcholine Hydroxide,Acetylcholine Iodide,Acetylcholine L-Tartrate,Acetylcholine Perchlorate,Acetylcholine Picrate,Acetylcholine Picrate (1:1),Acetylcholine Sulfate (1:1),Bromoacetylcholine,Chloroacetylcholine,Miochol,Acetylcholine L Tartrate,Bromide, Acetylcholine,Cusi, Acetilcolina,Fluoride, Acetylcholine,Hydroxide, Acetylcholine,Iodide, Acetylcholine,L-Tartrate, Acetylcholine,Perchlorate, Acetylcholine
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
August 2008, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
September 1991, Circulation research,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
January 1998, Life sciences,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
January 1983, Artery,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
December 1994, Journal of biomedical science,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
October 1991, The American journal of physiology,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
November 1999, European journal of pharmacology,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
January 2004, European journal of pharmacology,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
December 1985, European journal of pharmacology,
Takeo Itoh, and Junko Kajikuri, and Tomonori Hattori, and Nobuyoshi Kusama, and Tamao Yamamoto
February 2000, Arteriosclerosis, thrombosis, and vascular biology,
Copied contents to your clipboard!