Regeneration of adult rat CNS axons into peripheral nerve autografts: ultrastructural studies of the early stages of axonal sprouting and regenerative axonal growth. 1992

G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
Department of Anatomy and Developmental Biology, University College London, UK.

If one end of a segment of peripheral nerve is inserted into the brain or spinal cord, neuronal perikarya in the vicinity of the graft tip can be labelled with retrogradely transported tracers applied to the distal end of the graft several weeks later, showing that CNS axons can regenerate into and along such grafts. We have used transmission EM to examine some of the cellular responses that underlie this regenerative phenomenon, particularly its early stages. Segments of autologous peroneal or tibial nerve were inserted vertically into the thalamus of anaesthetized adult albino rats. The distal end of the graft was left beneath the scalp. Between five days and two months later the animals were killed and the brains prepared for ultrastructural study. Semi-thin and thin sections through the graft and surrounding brain were examined at two levels 6-7 mm apart in all animals: close to the tip of the graft in the thalamus (proximal graft) and at the top of the cerebral cortex (distal graft). In another series of animals with similar grafts, horseradish peroxidase was applied to the distal end of the graft 24-48 h before death. Examination by LM of appropriately processed serial coronal sections of the brains from these animals confirmed that up to several hundred neurons were retrogradely labelled in the thalamus, particularly in the thalamic reticular nucleus. Between five and 14 days after grafting, large numbers of tiny (0.05-0.20 microns diameter) nonmyelinated axonal profiles, considered to be axonal sprouts, were observed by EM within the narrow zone of abnormal thalamic parenchyma bordering the graft. The sprouts were much more numerous (commonly in large fascicles), smoother surfaced, and more rounded than nonmyelinated axons further from the graft or in corresponding areas on the contralateral side of animals with implants or in normal animals. At longer post-graft survival times, the number of such axons in the parenchyma around the graft declined. At five days, some axonal sprouts had entered the junctional zone between the brain and the graft. By eight days there were many sprouts in the junctional zone and some had penetrated the proximal graft to lie between its basal lamina-enclosed columns of Schwann cells, macrophages and myelin debris. Within the brain, sprouts were in contact predominantly with other sprouts but also with all types of glial cell.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008870 Microtubules Slender, cylindrical filaments found in the cytoskeleton of plant and animal cells. They are composed of the protein TUBULIN and are influenced by TUBULIN MODULATORS. Microtubule
D009186 Myelin Sheath The lipid-rich sheath surrounding AXONS in both the CENTRAL NERVOUS SYSTEMS and PERIPHERAL NERVOUS SYSTEM. The myelin sheath is an electrical insulator and allows faster and more energetically efficient conduction of impulses. The sheath is formed by the cell membranes of glial cells (SCHWANN CELLS in the peripheral and OLIGODENDROGLIA in the central nervous system). Deterioration of the sheath in DEMYELINATING DISEASES is a serious clinical problem. Myelin,Myelin Sheaths,Sheath, Myelin,Sheaths, Myelin
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D010525 Peripheral Nerves The nerves outside of the brain and spinal cord, including the autonomic, cranial, and spinal nerves. Peripheral nerves contain non-neuronal cells and connective tissue as well as axons. The connective tissue layers include, from the outside to the inside, the epineurium, the perineurium, and the endoneurium. Endoneurium,Epineurium,Perineurium,Endoneuriums,Epineuriums,Nerve, Peripheral,Nerves, Peripheral,Perineuriums,Peripheral Nerve
D002490 Central Nervous System The main information-processing organs of the nervous system, consisting of the brain, spinal cord, and meninges. Cerebrospinal Axis,Axi, Cerebrospinal,Axis, Cerebrospinal,Central Nervous Systems,Cerebrospinal Axi,Nervous System, Central,Nervous Systems, Central,Systems, Central Nervous
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001253 Astrocytes A class of large neuroglial (macroglial) cells in the central nervous system - the largest and most numerous neuroglial cells in the brain and spinal cord. Astrocytes (from "star" cells) are irregularly shaped with many long processes, including those with "end feet" which form the glial (limiting) membrane and directly and indirectly contribute to the BLOOD-BRAIN BARRIER. They regulate the extracellular ionic and chemical environment, and "reactive astrocytes" (along with MICROGLIA) respond to injury. Astroglia,Astroglia Cells,Astroglial Cells,Astrocyte,Astroglia Cell,Astroglial Cell,Astroglias,Cell, Astroglia,Cell, Astroglial

Related Publications

G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
April 1991, Experimental neurology,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
January 1983, Neuropathology and applied neurobiology,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
July 1996, Brain research,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
January 1986, Experimental neurology,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
August 1996, Experimental neurology,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
April 1982, Brain research,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
April 1995, The Journal of comparative neurology,
G Campbell, and A R Lieberman, and P N Anderson, and M Turmaine
January 1986, Neuroendocrinology,
Copied contents to your clipboard!