Cultured sympathetic neurons synthesize and release the cytokine interleukin 1 beta. 1992

M Freidin, and M V Bennett, and J A Kessler
Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461.

Autonomic neurons help to regulate immune responses, and there are reciprocal interactions between the nervous and immune systems. This study seeks to define some of the molecular mechanisms that may underlie such interactions. Immunoblot analysis indicated that cultured sympathetic neurons synthesize and release the cytokine interleukin 1 beta (IL-1 beta). In addition, RNA blot analysis of cultured sympathetic neurons demonstrated that the neurons contain mRNA encoding IL-1 beta. It was previously shown that explant cultures of sympathetic ganglia and dissociated cocultures of neurons with ganglionic nonneuronal cells synthesize substance P, whereas in situ levels of substance P and its mRNA are low. An antagonist at the interleukin 1 receptor markedly depressed this increase in substance P in cultures, suggesting that endogenous IL-1 beta mediates the synthetic response, at least in part. Because pure neuronal cultures do not contain substance P and neurons synthesize and release IL-1 beta, the actions of the cytokine require the presence of ganglion nonneuronal cells. These observations suggest a role for autonomic neurons in influencing immune responses by synthesizing and secreting at least two known immunoregulators, the cytokine IL-1 beta and the neuropeptide substance P.

UI MeSH Term Description Entries
D007375 Interleukin-1 A soluble factor produced by MONOCYTES; MACROPHAGES, and other cells which activates T-lymphocytes and potentiates their response to mitogens or antigens. Interleukin-1 is a general term refers to either of the two distinct proteins, INTERLEUKIN-1ALPHA and INTERLEUKIN-1BETA. The biological effects of IL-1 include the ability to replace macrophage requirements for T-cell activation. IL-1,Lymphocyte-Activating Factor,Epidermal Cell Derived Thymocyte-Activating Factor,Interleukin I,Macrophage Cell Factor,T Helper Factor,Epidermal Cell Derived Thymocyte Activating Factor,Interleukin 1,Lymphocyte Activating Factor
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005728 Ganglia, Sympathetic Ganglia of the sympathetic nervous system including the paravertebral and the prevertebral ganglia. Among these are the sympathetic chain ganglia, the superior, middle, and inferior cervical ganglia, and the aorticorenal, celiac, and stellate ganglia. Celiac Ganglia,Sympathetic Ganglia,Celiac Ganglion,Ganglion, Sympathetic,Ganglia, Celiac,Ganglion, Celiac,Sympathetic Ganglion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated

Related Publications

M Freidin, and M V Bennett, and J A Kessler
November 1998, Journal of neuroimmunology,
M Freidin, and M V Bennett, and J A Kessler
December 1993, Neuron,
M Freidin, and M V Bennett, and J A Kessler
October 1991, Kidney international,
M Freidin, and M V Bennett, and J A Kessler
July 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
M Freidin, and M V Bennett, and J A Kessler
July 1994, Neuroscience,
M Freidin, and M V Bennett, and J A Kessler
March 1976, Journal of neurochemistry,
M Freidin, and M V Bennett, and J A Kessler
April 1981, Acta pathologica et microbiologica Scandinavica. Section C, Immunology,
M Freidin, and M V Bennett, and J A Kessler
February 1988, The EMBO journal,
Copied contents to your clipboard!