Dynorphin and the hypothalamo-pituitary-adrenal axis during fetal development. 2003

Hazel H Szeto
Department of Pharmacology, LC-405, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA. hhszeto@med.cornell.edu

Although dynorphin has long been considered an endogenous opioid peptide with high affinity for the kappa-opioid receptor, its biological function remains uncertain. The high concentration of dynorphin peptides and kappa-opioid receptors in the hypothalamus suggest a possible role for dynorphin in neuroendocrine regulation. This review will summarize evidence that support a role for dynorphin in regulation of the developing hypothalamo-pituitary-adrenal (HPA) axis. Dynorphin can exert dual actions on adrenocorticotropin (ACTH) release: (i) via activation of hypothalamic kappa-opioid receptors leading to release of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP), and (ii) via a non-opioid mechanism that involves N-methyl-D-aspartate (NMDA) receptors and prostaglandins, and which is not dependent on CRH or AVP. The primary site of action of dynorphin and NMDA appears to be the fetal hypothalamus or a supra-hypothalamic site. The non-opioid mechanism does not mature until a few days prior to parturition and is active for only the brief perinatal period. In contrast, the opioid mechanism behaves as a constitutive system with sustained activity from prenatal to postnatal life. It is likely that the two mechanisms may respond to different stress stimuli and play a different role during development.

UI MeSH Term Description Entries
D007030 Hypothalamo-Hypophyseal System A collection of NEURONS, tracts of NERVE FIBERS, endocrine tissue, and blood vessels in the HYPOTHALAMUS and the PITUITARY GLAND. This hypothalamo-hypophyseal portal circulation provides the mechanism for hypothalamic neuroendocrine (HYPOTHALAMIC HORMONES) regulation of pituitary function and the release of various PITUITARY HORMONES into the systemic circulation to maintain HOMEOSTASIS. Hypothalamic Hypophyseal System,Hypothalamo-Pituitary-Adrenal Axis,Hypophyseal Portal System,Hypothalamic-Pituitary Unit,Hypothalamic Hypophyseal Systems,Hypothalamic Pituitary Unit,Hypothalamo Hypophyseal System,Hypothalamo Pituitary Adrenal Axis,Portal System, Hypophyseal
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010913 Pituitary-Adrenal System The interactions between the anterior pituitary and adrenal glands, in which corticotropin (ACTH) stimulates the adrenal cortex and adrenal cortical hormones suppress the production of corticotropin by the anterior pituitary. Pituitary Adrenal System,Pituitary-Adrenal Systems,System, Pituitary-Adrenal,Systems, Pituitary-Adrenal
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004399 Dynorphins A class of opioid peptides including dynorphin A, dynorphin B, and smaller fragments of these peptides. Dynorphins prefer kappa-opioid receptors (RECEPTORS, OPIOID, KAPPA) and have been shown to play a role as central nervous system transmitters. Dynorphin,Dynorphin (1-17),Dynorphin A,Dynorphin A (1-17)
D005260 Female Females
D005314 Embryonic and Fetal Development Morphological and physiological development of EMBRYOS or FETUSES. Embryo and Fetal Development,Prenatal Programming,Programming, Prenatal
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

Hazel H Szeto
January 1998, The National medical journal of India,
Hazel H Szeto
November 1972, Tidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke,
Hazel H Szeto
July 1988, Lancet (London, England),
Hazel H Szeto
January 2016, Frontiers of hormone research,
Hazel H Szeto
March 2003, Journal of endocrinological investigation,
Hazel H Szeto
January 2003, Journal of endotoxin research,
Hazel H Szeto
June 2003, Minerva endocrinologica,
Hazel H Szeto
May 2012, General and comparative endocrinology,
Hazel H Szeto
July 1991, The International journal of neuroscience,
Hazel H Szeto
January 2000, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!