Mechanisms of Sertoli cell insulin-like growth factor (IGF)-binding protein-3 regulation by IGF-I and adenosine 3',5'-monophosphate. 1992

E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
Division of Endocrinology, Children's Hospital Medical Center, Cincinnati, Ohio 45229.

FSH, which stimulates cAMP in the Sertoli cell, markedly lowers the concentration of insulin-like growth factor-binding protein-3 (IGFBP-3) in Sertoli cell-conditioned medium; in contrast, insulin-like growth factor-I (IGF-I) increases BP-3 expression. In this study, the mechanisms controlling the contrasting effects of cAMP and IGF-I were investigated. The abundance of BP-3 mRNA was dramatically lowered by (Bu)2cAMP, but was unaffected by IGF-I. Analyzed by ligand blot of conditioned medium, coincubation of (Bu)2cAMP and IGF-I largely eliminated the increase observed with IGF-I alone. Based on the following evidence, the effect of IGF-I appeared to be solely related to the capacity of IGF-I to interact directly with BP-3. 1) Insulin at micromolar concentrations failed to increase BP-3 abundance despite documentation by affinity cross-linking that insulin displaced [125I]IGF-I from the IGF-I receptor. 2) A synthetic IGF-I analog, [Leu24,1-62]IGF-I, which has reduced binding affinity for rat IGF-I receptor but displays high affinity for rat Sertoli cell-conditioned medium BPs, increased BP-3 abundance. 3) A synthetic IGF-I analog, B-chain mutant, which has reduced affinity for rat Sertoli cell BPs but displays normal affinity for the rat IGF-I receptor, failed to increase BP-3 abundance. 4) Human recombinant glycosylated [125I]BP-3 when added to cultured Sertoli cells was preserved in the medium when IGF-I or analogs with BP-3 affinity were present. 5) IGF-I, in dose-responsive manner, both retarded the disappearance from the medium of exogenously added human recombinant nonglycosylated BP-3 and decreased the amount of membrane-associated BP-3. These results indicate that whereas cAMP lowers BP-3 abundance in medium, most likely by markedly decreasing synthesis, IGF-I increases BP-3 accumulation by retarding its clearance by the Sertoli cell.

UI MeSH Term Description Entries
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007334 Insulin-Like Growth Factor I A well-characterized basic peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like, and mitogenic activities. This growth factor has a major, but not absolute, dependence on GROWTH HORMONE. It is believed to be mainly active in adults in contrast to INSULIN-LIKE GROWTH FACTOR II, which is a major fetal growth factor. IGF-I,Somatomedin C,IGF-1,IGF-I-SmC,Insulin Like Growth Factor I,Insulin-Like Somatomedin Peptide I,Insulin Like Somatomedin Peptide I
D008297 Male Males
D011994 Recombinant Proteins Proteins prepared by recombinant DNA technology. Biosynthetic Protein,Biosynthetic Proteins,DNA Recombinant Proteins,Recombinant Protein,Proteins, Biosynthetic,Proteins, Recombinant DNA,DNA Proteins, Recombinant,Protein, Biosynthetic,Protein, Recombinant,Proteins, DNA Recombinant,Proteins, Recombinant,Recombinant DNA Proteins,Recombinant Proteins, DNA
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D003994 Bucladesine A cyclic nucleotide derivative that mimics the action of endogenous CYCLIC AMP and is capable of permeating the cell membrane. It has vasodilator properties and is used as a cardiac stimulant. (From Merck Index, 11th ed) Dibutyryl Adenosine-3',5'-Monophosphate,Dibutyryl Cyclic AMP,(But)(2) cAMP,Bucladesine, Barium (1:1) Salt,Bucladesine, Disodium Salt,Bucladesine, Monosodium Salt,Bucladesine, Sodium Salt,DBcAMP,Dibutyryl Adenosine 3,5 Monophosphate,N',O'-Dibutyryl-cAMP,N(6),0(2')-Dibutyryl Cyclic AMP,AMP, Dibutyryl Cyclic,Adenosine-3',5'-Monophosphate, Dibutyryl,Cyclic AMP, Dibutyryl,Dibutyryl Adenosine 3',5' Monophosphate,Disodium Salt Bucladesine,Monosodium Salt Bucladesine,N',O' Dibutyryl cAMP,Sodium Salt Bucladesine
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D006031 Glycosylation The synthetic chemistry reaction or enzymatic reaction of adding carbohydrate or glycosyl groups. GLYCOSYLTRANSFERASES carry out the enzymatic glycosylation reactions. The spontaneous, non-enzymatic attachment of reducing sugars to free amino groups in proteins, lipids, or nucleic acids is called GLYCATION (see MAILLARD REACTION). Protein Glycosylation,Glycosylation, Protein
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic

Related Publications

E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
December 1995, Endocrinology,
E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
May 1997, Journal of cellular physiology,
E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
September 2003, Endocrinology,
E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
July 2000, Cancer research,
E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
October 2000, The Journal of clinical endocrinology and metabolism,
E P Smith, and P T Cheung, and A Ferguson, and S D Chernausek
June 1996, Molecular endocrinology (Baltimore, Md.),
Copied contents to your clipboard!