Implication of RNA structure on antisense oligonucleotide hybridization kinetics. 1992

W F Lima, and B P Monia, and D J Ecker, and S M Freier
Department of Molecular and Cellular Biology, Isis Pharmaceuticals, Carlsbad, California 92008.

A 47-nucleotide transcript of the activated Ha-ras gene was prepared and determined, by enzymatic structure mapping, to form a stable hairpin structure. Six antisense decaribonucleotides were designed, and association constants (Ka) for the hairpin- and length-matched complements were measured. Two of the antisense oligonucleotides targeted to the loop had nearly equal affinity for the transcript compared to the complement. The others, including one oligonucleotide complementary to the 3' side of the single-stranded loop, bound 10(5)-10(6)-fold less tightly to the transcript than to the short complement. We propose the difference in affinity is due to the target structure, both the secondary structure of the stem and the structure in the loop. Measurement of the bimolecular association rate constant, k1, and the dissociation rate constant, k-1, for these oligonucleotides indicates the observed relationship between affinity and structure is primarily due to k1.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D013816 Thermodynamics A rigorously mathematical analysis of energy relationships (heat, work, temperature, and equilibrium). It describes systems whose states are determined by thermal parameters, such as temperature, in addition to mechanical and electromagnetic parameters. (From Hawley's Condensed Chemical Dictionary, 12th ed) Thermodynamic
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription
D016283 Proto-Oncogene Proteins p21(ras) Cellular proteins encoded by the H-ras, K-ras and N-ras genes. The proteins have GTPase activity and are involved in signal transduction as monomeric GTP-binding proteins. Elevated levels of p21 c-ras have been associated with neoplasia. This enzyme was formerly listed as EC 3.6.1.47. Proto-Oncogene Proteins c-ras,c-Ha-ras p21,c-Ki-ras p21,p21(N-ras),p21(c-Ha-ras),p21(c-Ki-ras),p21(c-ras),p21(ras),ras Proto-Oncogene Protein p21,Proto-Oncogene Protein p21(c-Ha-ras),Proto-Oncogene Protein p21(c-Ki-ras),Proto-Oncogene Protein p21(c-N-ras),Proto-Oncogene Protein p21(ras),Proto-Oncogene Protein ras,c-ras Proteins,p21 c-H-ras,p21 c-Ha-ras,p21 c-K-ras,p21 c-Ki-ras,p21 c-ras,ras Proto-Oncogene Product p21,Proteins c-ras, Proto-Oncogene,Proto Oncogene Protein ras,Proto Oncogene Proteins c ras,c Ha ras p21,c Ki ras p21,c ras Proteins,c-H-ras, p21,c-Ha-ras, p21,c-K-ras, p21,c-Ki-ras, p21,c-ras, Proto-Oncogene Proteins,c-ras, p21,p21 c H ras,p21 c Ha ras,p21 c K ras,p21 c Ki ras,p21 c ras,p21, c-Ha-ras,p21, c-Ki-ras,ras Proto Oncogene Product p21,ras Proto Oncogene Protein p21,ras, Proto-Oncogene Protein
D016376 Oligonucleotides, Antisense Short fragments of DNA or RNA that are used to alter the function of target RNAs or DNAs to which they hybridize. Anti-Sense Oligonucleotide,Antisense Oligonucleotide,Antisense Oligonucleotides,Anti-Sense Oligonucleotides,Anti Sense Oligonucleotide,Anti Sense Oligonucleotides,Oligonucleotide, Anti-Sense,Oligonucleotide, Antisense,Oligonucleotides, Anti-Sense

Related Publications

W F Lima, and B P Monia, and D J Ecker, and S M Freier
January 1997, Ciba Foundation symposium,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
December 2013, Biochimie,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
July 1997, The Journal of biological chemistry,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
September 1995, Nucleic acids research,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
May 2014, The Journal of chemical physics,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
June 2000, Current opinion in molecular therapeutics,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
October 2003, Journal of biomolecular structure & dynamics,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
May 2005, Analytical biochemistry,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
August 1997, Nature biotechnology,
W F Lima, and B P Monia, and D J Ecker, and S M Freier
September 1989, European journal of biochemistry,
Copied contents to your clipboard!