Epiblast and primitive-streak origins of the endoderm in the gastrulating chick embryo. 2003

Aaron Lawson, and Gary C Schoenwolf
Department of Neurobiology and Anatomy, and Children's Health Research Center, University of Utah School of Medicine, Salt Lake City, UT 84132-3401, USA.

Gastrulation is characterized by the extensive movements of cells. Fate mapping is used to follow such cell movements as they occur over time, and prospective fate maps have been constructed for several stages of the model organisms used in modern studies in developmental biology. In chick embryos, detailed fate maps have been constructed for both prospective mesodermal and ectodermal cells. However, the origin and displacement of the prospective endodermal cells during crucial periods in gastrulation remain unclear. This study had three aims. First, we determined the primitive-streak origin of the endoderm using supravital fluorescent markers, and followed the movement of the prospective endodermal cells as they dispersed to generate the definitive endodermal layer. We show that between stages 3a/b and 4, the intraembryonic definitive endoderm receives contributions mainly from the rostral half of the primitive streak, and that endodermal movements parallel those of ingressing adjacent mesodermal subdivisions. Second, the question of the epiblast origin of the endodermal layer was addressed by precisely labeling epiblast cells in a region known to give rise to prospective somitic cells, and following their movement as they underwent ingression through the primitive streak. We show that the epiblast clearly contributes prospective endodermal cells to the primitive streak, and subsequently to definitive endoderm of the area pellucida. Finally, the relationship between the hypoblast and the definitive endoderm was defined by following labeled rostral primitive-streak cells over a short period of time as they contributed to the definitive endoderm, and combining this with in situ hybridization with a riboprobe for Crescent, a marker of the hypoblast. We show that as the definitive endodermal layer is laid down, there is cell-cell intercalation at its interface with the displaced hypoblast cells. These data were used to construct detailed prospective fate maps of the endoderm in the chick embryo, delineating the origins and migrations of endodermal cells in various rostrocaudal levels of the primitive streak during key periods in early development.

UI MeSH Term Description Entries
D002232 Carbocyanines Compounds that contain three methine groups. They are frequently used as cationic dyes used for differential staining of biological materials. Carbocyanine
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004707 Endoderm The inner of the three germ layers of an embryo. Definitive Endoderm,Definitive Endoderms,Endoderm, Definitive,Endoderms
D005452 Fluoresceins A family of spiro(isobenzofuran-1(3H),9'-(9H)xanthen)-3-one derivatives. These are used as dyes, as indicators for various metals, and as fluorescent labels in immunoassays. Tetraiodofluorescein
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013388 Succinimides A subclass of IMIDES with the general structure of pyrrolidinedione. They are prepared by the distillation of ammonium succinate. They are sweet-tasting compounds that are used as chemical intermediates and plant growth stimulants. Butanimides,Pyrrolidinediones

Related Publications

Aaron Lawson, and Gary C Schoenwolf
July 1984, Wilhelm Roux's archives of developmental biology,
Aaron Lawson, and Gary C Schoenwolf
October 1984, Cell differentiation,
Aaron Lawson, and Gary C Schoenwolf
June 1979, Journal of embryology and experimental morphology,
Aaron Lawson, and Gary C Schoenwolf
February 2020, Open biology,
Aaron Lawson, and Gary C Schoenwolf
February 2001, Journal of theoretical biology,
Aaron Lawson, and Gary C Schoenwolf
January 2008, Current topics in developmental biology,
Aaron Lawson, and Gary C Schoenwolf
January 1977, Differentiation; research in biological diversity,
Aaron Lawson, and Gary C Schoenwolf
May 2010, PloS one,
Aaron Lawson, and Gary C Schoenwolf
June 2006, Reproductive biomedicine online,
Copied contents to your clipboard!