Molecular and electrophysiological characterization of a allelic variant of the rat alpha 6 GABAA receptor subunit. 1992

T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
Department of Biological Chemistry, University of Michigan Medical Center, Ann Arbor 48109-1687.

A 1.45 kb DNA sequence encoding the rat alpha 6 GABAA receptor subunit (nucleotides 33-1483) was cloned from a Sprague-Dawley rat brain cDNA library by PCR amplification. Dideoxy sequencing of two individual clones revealed that the nucleotide sequence differed at only one basepair (T480-->G) from that published previously. This difference altered the deduced amino acid sequence, producing a conservative amino acid substitution (His121-->Gln). A Gln residue is present at the same location in the bovine alpha 6 subunit. Restriction endonuclease analysis of the total PCR product demonstrated that this variant of the rat alpha 6 subunit was the only allele found in this particular rat brain library, the original allele was not present. These results were further verified by RNAse protection assays performed with RNA isolated from individual rat cerebella. alpha 6, beta 1, and gamma 2S subunits were transiently expressed in L929 cells for electrophysiological analysis. Whole-cell recordings obtained from the cells demonstrated that GABAA receptor channels with the expected GABA and benzodiazepine pharmacology were produced. Excised outside out single channel recordings from the same cells revealed that GABA elicited brief duration openings to a 33 pS main conductance level and to at least one smaller (approximately 21 pS) subconductance level. Thus this allelic variant of rat alpha 6 subunit could assemble with other subunits to form a functional GABAA receptor channel with similar properties to the original allelic form.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008297 Male Males
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D005260 Female Females
D005784 Gene Amplification A selective increase in the number of copies of a gene coding for a specific protein without a proportional increase in other genes. It occurs naturally via the excision of a copy of the repeating sequence from the chromosome and its extrachromosomal replication in a plasmid, or via the production of an RNA transcript of the entire repeating sequence of ribosomal RNA followed by the reverse transcription of the molecule to produce an additional copy of the original DNA sequence. Laboratory techniques have been introduced for inducing disproportional replication by unequal crossing over, uptake of DNA from lysed cells, or generation of extrachromosomal sequences from rolling circle replication. Amplification, Gene
D000483 Alleles Variant forms of the same gene, occupying the same locus on homologous CHROMOSOMES, and governing the variants in production of the same gene product. Allelomorphs,Allele,Allelomorph
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
January 2004, The Journal of biological chemistry,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
September 1992, Neuroscience letters,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
July 1996, Brain research. Molecular brain research,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
May 1996, Brain research,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
July 2004, Brain research. Developmental brain research,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
October 1991, Brain research. Molecular brain research,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
November 1988, Journal of neurochemistry,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
November 1989, FEBS letters,
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
January 2003, Alcohol (Fayetteville, N.Y.),
T P Angelotti, and F Tan, and K G Chahine, and R L Macdonald
September 1991, FEBS letters,
Copied contents to your clipboard!