Three components in the light-induced current of the Limulus ventral photoreceptor. 1992

A Deckert, and K Nagy, and C S Helrich, and H Stieve
Institut für Biologie II, RWTH Aachen, FRG.

1. Light-induced currents were measured in Limulus ventral nerve photoreceptors using a two-electrode voltage clamp. Three kinetically distinct components in the light-induced current could be distinguished by varying the light adaptation state of the photoreceptor and the intensity of the stimulus light. 2. The components could be partly separated by choosing appropriate stimulus intensities and dark adaptation time. Thus the properties of the components could be separately studied. The first component is the first to recover after a light adaptation, appears temporally first in the light-induced response, has the lowest activation threshold and is the smallest. The second component needs a longer time to recover after an adapting illumination and its kinetics differ from that of the other components. Applying a bright stimulus to a dark-adapted cell a third component can be observed late in the response. 3. The time to peak of the first and the third components depended on the stimulus intensity, but not on the dark adaptation time. The time to peak of the second component became shorter the longer the dark adaptation time. For a constant adaptation state the time to the maximum of component 2 was independent, but those of components 1 and 3 were dependent on the membrane voltage. 4. To exclude the possibility of the contribution of voltage-gated currents, light-activated currents were measured at clamp potentials more negative than -50 mV after adding 4-aminopyridine into the bath solution or injecting tetraethyl-ammonium chloride into the cell. The properties of the three components remained unchanged under these conditions. 5. The I-V curve of the first component was flat at negative membrane potentials and had a strong outward rectification at positive membrane potentials. The I-V curve of component 3 showed a negative resistance at potentials more negative than about -30 mV. In contrast, the I-V curve for the second component was always nearly linear. 6. No membrane potential was found where the light-induced current was zero. Instead, current traces close to the reversal potential showed a complex waveform indicating different reversal potentials for the three components. 7. The results indicate that the current components are caused by three different populations of light-sensitive channels. The different activations, deactivations and recovery kinetics of the components suggest that the three types of channels are activated by distinct intracellular transmitters.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008027 Light That portion of the electromagnetic spectrum in the visible, ultraviolet, and infrared range. Light, Visible,Photoradiation,Radiation, Visible,Visible Radiation,Photoradiations,Radiations, Visible,Visible Light,Visible Radiations
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D010786 Photoreceptor Cells Specialized cells that detect and transduce light. They are classified into two types based on their light reception structure, the ciliary photoreceptors and the rhabdomeric photoreceptors with MICROVILLI. Ciliary photoreceptor cells use OPSINS that activate a PHOSPHODIESTERASE phosphodiesterase cascade. Rhabdomeric photoreceptor cells use opsins that activate a PHOSPHOLIPASE C cascade. Ciliary Photoreceptor Cells,Ciliary Photoreceptors,Rhabdomeric Photoreceptor Cells,Rhabdomeric Photoreceptors,Cell, Ciliary Photoreceptor,Cell, Photoreceptor,Cell, Rhabdomeric Photoreceptor,Cells, Ciliary Photoreceptor,Cells, Photoreceptor,Cells, Rhabdomeric Photoreceptor,Ciliary Photoreceptor,Ciliary Photoreceptor Cell,Photoreceptor Cell,Photoreceptor Cell, Ciliary,Photoreceptor Cell, Rhabdomeric,Photoreceptor Cells, Ciliary,Photoreceptor Cells, Rhabdomeric,Photoreceptor, Ciliary,Photoreceptor, Rhabdomeric,Photoreceptors, Ciliary,Photoreceptors, Rhabdomeric,Rhabdomeric Photoreceptor,Rhabdomeric Photoreceptor Cell
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D006737 Horseshoe Crabs An arthropod subclass (Xiphosura) comprising the North American (Limulus) and Asiatic (Tachypleus) genera of horseshoe crabs. Crabs, Horseshoe,Limulus,Limulus polyphemus,Tachypleus,Xiphosura,Crab, Horseshoe,Horseshoe Crab,Xiphosuras
D000221 Adaptation, Ocular The adjustment of the eye to variations in the intensity of light. Light adaptation is the adjustment of the eye when the light threshold is increased; DARK ADAPTATION when the light is greatly reduced. (From Cline et al., Dictionary of Visual Science, 4th ed) Light Adaptation,Adaptation, Light,Adaptations, Light,Adaptations, Ocular,Light Adaptations,Ocular Adaptation,Ocular Adaptations
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013757 Tetraethylammonium Compounds Quaternary ammonium compounds that consist of an ammonium cation where the central nitrogen atom is bonded to four ethyl groups. Tetramon,Tetrylammonium,Compounds, Tetraethylammonium
D015640 Ion Channel Gating The opening and closing of ion channels due to a stimulus. The stimulus can be a change in membrane potential (voltage-gated), drugs or chemical transmitters (ligand-gated), or a mechanical deformation. Gating is thought to involve conformational changes of the ion channel which alters selective permeability. Gating, Ion Channel,Gatings, Ion Channel,Ion Channel Gatings

Related Publications

A Deckert, and K Nagy, and C S Helrich, and H Stieve
October 1995, Neuroreport,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
August 1974, The Journal of general physiology,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
November 1971, The Journal of general physiology,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
October 1982, Neuroscience letters,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
August 1989, Visual neuroscience,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
March 1992, Vision research,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
November 1979, The Journal of physiology,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
January 1980, Brain research bulletin,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
May 1973, The Journal of general physiology,
A Deckert, and K Nagy, and C S Helrich, and H Stieve
September 1984, The Journal of general physiology,
Copied contents to your clipboard!