GABAergic and catecholaminergic innervation of mediobasal hypothalamic beta-endorphin cells projecting to the medial preoptic area. 1992

T L Horvath, and F Naftolin, and C Leranth
Department of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06510.

In the absence of cellular estrogen receptors or proven direct estrogen action in the rat, it is assumed that estrogen indirectly regulates the secretory activity of the preoptic area luteinizing hormone-releasing hormone-producing cells. We have previously shown that pro-opiomelanocortin neurons in the arcuate nucleus of the rat send axons rostrally to connect with luteinizing hormone-releasing hormone neurons of the preoptic area. An experiment combining retrograde tracing and double-immunostaining was used to test the hypothesis that rat GABAergic and/or catecholaminergic neurons can influence luteinizing hormone-releasing hormone-producing cells via mediobasal hypothalamic beta-endorphin neurons. The retrograde tracer horseradish peroxidase was injected into the medial preoptic area; two days later, arcuate nucleus Vibratome sections were double-immunostained for beta-endorphin and glutamate decarboxylase or tyrosine hydroxylase. Light and electron microscopic analysis of these triple-labeled sections demonstrated that a population of beta-endorphin-immunoreactive neurons concentrated in the ventromedial arcuate nucleus contain retrogradely transported horseradish peroxidase granules and form synaptic contacts with glutamate decarboxylase- and tyrosine hydroxylase-immunoreactive axon terminals. The present data suggest that arcuate nucleus GABA and catecholamine fibers may influence luteinizing hormone-releasing hormone-containing neurons via projective pro-opiomelanocortin cells.

UI MeSH Term Description Entries
D007033 Hypothalamus, Middle Middle portion of the hypothalamus containing the arcuate, dorsomedial, ventromedial nuclei, the TUBER CINEREUM and the PITUITARY GLAND. Hypothalamus, Medial,Intermediate Hypothalamic Region,Hypothalamic Region, Intermediate,Hypothalamic Regions, Intermediate,Intermediate Hypothalamic Regions,Medial Hypothalamus,Middle Hypothalamus,Region, Intermediate Hypothalamic,Regions, Intermediate Hypothalamic
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D009412 Nerve Fibers Slender processes of NEURONS, including the AXONS and their glial envelopes (MYELIN SHEATH). Nerve fibers conduct nerve impulses to and from the CENTRAL NERVOUS SYSTEM. Cerebellar Mossy Fibers,Mossy Fibers, Cerebellar,Cerebellar Mossy Fiber,Mossy Fiber, Cerebellar,Nerve Fiber
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D005260 Female Females
D005968 Glutamate Decarboxylase A pyridoxal-phosphate protein that catalyzes the alpha-decarboxylation of L-glutamic acid to form gamma-aminobutyric acid and carbon dioxide. The enzyme is found in bacteria and in invertebrate and vertebrate nervous systems. It is the rate-limiting enzyme in determining GAMMA-AMINOBUTYRIC ACID levels in normal nervous tissues. The brain enzyme also acts on L-cysteate, L-cysteine sulfinate, and L-aspartate. EC 4.1.1.15. Glutamate Carboxy-Lyase,Glutamic Acid Decarboxylase,Acid Decarboxylase, Glutamic,Carboxy-Lyase, Glutamate,Decarboxylase, Glutamate,Decarboxylase, Glutamic Acid,Glutamate Carboxy Lyase
D006735 Horseradish Peroxidase An enzyme isolated from horseradish which is able to act as an antigen. It is frequently used as a histochemical tracer for light and electron microscopy. Its antigenicity has permitted its use as a combined antigen and marker in experimental immunology. Alpha-Peroxidase,Ferrihorseradish Peroxidase,Horseradish Peroxidase II,Horseradish Peroxidase III,Alpha Peroxidase,II, Horseradish Peroxidase,III, Horseradish Peroxidase,Peroxidase II, Horseradish,Peroxidase III, Horseradish,Peroxidase, Ferrihorseradish,Peroxidase, Horseradish
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D001615 beta-Endorphin A 31-amino acid peptide that is the C-terminal fragment of BETA-LIPOTROPIN. It acts on OPIOID RECEPTORS and is an analgesic. Its first four amino acids at the N-terminal are identical to the tetrapeptide sequence of METHIONINE ENKEPHALIN and LEUCINE ENKEPHALIN. Endorphin, beta,beta-Endorphin (1-31),beta Endorphin

Related Publications

T L Horvath, and F Naftolin, and C Leranth
May 1988, Experimental and clinical endocrinology,
T L Horvath, and F Naftolin, and C Leranth
March 1987, Archivum histologicum Japonicum = Nihon soshikigaku kiroku,
T L Horvath, and F Naftolin, and C Leranth
June 1993, Brain research. Developmental brain research,
T L Horvath, and F Naftolin, and C Leranth
December 1990, The Journal of comparative neurology,
T L Horvath, and F Naftolin, and C Leranth
June 1982, Brain research bulletin,
Copied contents to your clipboard!