Synaptic plasticity in the dentate gyrus of aged rats is altered after chronic nimodipine application. 1992

G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
Department of Animal Physiology, University of Groningen, Haren, The Netherlands.

We examined ultrastructural correlates of synaptic plasticity in the hippocampus of young (3 months) vs aged (30 months) Wistar rats and established the effects of the calcium antagonist nimodipine in animals chronically treated from 24 to 30 months. The effects of nimodipine was studied since this compound improves hippocampal neuronal physiology and enhances cognitive function during aging. In the supragranular layer of the dentate gyrus we found a 24% decrease in synaptic density (Nv) in aged animals, while synaptic size (S) was not significantly altered. After nimodipine treatment Nv in aged rats was not significantly different from young adults, thus being significantly increased compared to age-matched controls. The size of synapses was not significantly altered after nimodipine administration. Total synaptic surface area (Sv) in nimodipine-treated animals was significantly increased compared to aged controls, however, Sv remained significantly lower than in young adults. These data indicate that chronic administration of nimodipine enables granular cells in the dentate gyrus to maintain its number of synaptic contacts during the aging process. Furthermore, the presented influence of nimodipine on synaptic plasticity processes may underlie previously reported improved cognitive functioning of aged animals treated similarly with nimodipine.

UI MeSH Term Description Entries
D008297 Male Males
D009473 Neuronal Plasticity The capacity of the NERVOUS SYSTEM to change its reactivity as the result of successive activations. Brain Plasticity,Plasticity, Neuronal,Axon Pruning,Axonal Pruning,Dendrite Arborization,Dendrite Pruning,Dendritic Arborization,Dendritic Pruning,Dendritic Remodeling,Neural Plasticity,Neurite Pruning,Neuronal Arborization,Neuronal Network Remodeling,Neuronal Pruning,Neuronal Remodeling,Neuroplasticity,Synaptic Plasticity,Synaptic Pruning,Arborization, Dendrite,Arborization, Dendritic,Arborization, Neuronal,Arborizations, Dendrite,Arborizations, Dendritic,Arborizations, Neuronal,Axon Prunings,Axonal Prunings,Brain Plasticities,Dendrite Arborizations,Dendrite Prunings,Dendritic Arborizations,Dendritic Prunings,Dendritic Remodelings,Network Remodeling, Neuronal,Network Remodelings, Neuronal,Neural Plasticities,Neurite Prunings,Neuronal Arborizations,Neuronal Network Remodelings,Neuronal Plasticities,Neuronal Prunings,Neuronal Remodelings,Neuroplasticities,Plasticities, Brain,Plasticities, Neural,Plasticities, Neuronal,Plasticities, Synaptic,Plasticity, Brain,Plasticity, Neural,Plasticity, Synaptic,Pruning, Axon,Pruning, Axonal,Pruning, Dendrite,Pruning, Dendritic,Pruning, Neurite,Pruning, Neuronal,Pruning, Synaptic,Prunings, Axon,Prunings, Axonal,Prunings, Dendrite,Prunings, Dendritic,Prunings, Neurite,Prunings, Neuronal,Prunings, Synaptic,Remodeling, Dendritic,Remodeling, Neuronal,Remodeling, Neuronal Network,Remodelings, Dendritic,Remodelings, Neuronal,Remodelings, Neuronal Network,Synaptic Plasticities,Synaptic Prunings
D009553 Nimodipine A calcium channel blockader with preferential cerebrovascular activity. It has marked cerebrovascular dilating effects and lowers blood pressure. Admon,Bay e 9736,Brainal,Calnit,Kenesil,Modus,Nimodipin Hexal,Nimodipin-ISIS,Nimodipino Bayvit,Nimotop,Nymalize,Remontal,Bayvit, Nimodipino,Hexal, Nimodipin,Nimodipin ISIS,e 9736, Bay
D010772 Phosphotungstic Acid Tungsten hydroxide oxide phosphate. A white or slightly yellowish-green, slightly efflorescent crystal or crystalline powder. It is used as a reagent for alkaloids and many other nitrogen bases, for phenols, albumin, peptone, amino acids, uric acid, urea, blood, and carbohydrates. (From Merck Index, 11th ed) Acid, Phosphotungstic
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013194 Staining and Labeling The marking of biological material with a dye or other reagent for the purpose of identifying and quantitating components of tissues, cells or their extracts. Histological Labeling,Staining,Histological Labelings,Labeling and Staining,Labeling, Histological,Labelings, Histological,Stainings
D013569 Synapses Specialized junctions at which a neuron communicates with a target cell. At classical synapses, a neuron's presynaptic terminal releases a chemical transmitter stored in synaptic vesicles which diffuses across a narrow synaptic cleft and activates receptors on the postsynaptic membrane of the target cell. The target may be a dendrite, cell body, or axon of another neuron, or a specialized region of a muscle or secretory cell. Neurons may also communicate via direct electrical coupling with ELECTRICAL SYNAPSES. Several other non-synaptic chemical or electric signal transmitting processes occur via extracellular mediated interactions. Synapse

Related Publications

G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
September 1987, Journal of gerontology,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
September 2000, The Journal of neuroscience : the official journal of the Society for Neuroscience,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
June 2022, iScience,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
January 2018, Neuroscience letters,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
November 1995, Journal of neurophysiology,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
June 2016, Synapse (New York, N.Y.),
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
January 2011, PloS one,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
January 1983, Neurobiology of aging,
G I de Jong, and B Buwalda, and T Schuurman, and P G Luiten
October 2011, Toxicology,
Copied contents to your clipboard!