Convulsant actions of calycanthine. 2003

Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
Faculty of Pharmacy, The University of Sydney, New South Wales, 2006, Australia.

The principal alkaloid of the family Calycanthaceae, calycanthine has long been recognized as a central convulsant. The alkaloid inhibited the potassium-stimulated release of [(3)H]GABA from slices of rat hippocampus with an ED(50) of approximately 21 microM. This effect appeared to be moderately selective since calycanthine at 100 microM had only a weak effect on the potassium-stimulated release of [(3)H]acetylcholine (15%) and no significant effects on the release of [(3)H]D-aspartate from hippocampal and cerebellar slices or the release of [(3)H]glycine from spinal cord slices. Calycanthine blocked the L-type calcium currents with an IC(50) of approximately 42 microM and also weakly inhibited the N-type calcium currents (IC(50) > 100 microM) from neuroblastoma X glioma cells, suggesting voltage-dependent calcium channel blockade as a possible mechanism for its inhibition of GABA and ACh release. Calycanthine was also found to directly inhibit GABA-mediated currents (K(B) approximately 135 microM) from human alpha(1)beta(2)gamma(2L) GABA(A) receptors expressed in Xenopus laevis oocytes but had no effect at 100 microM on human rho(1) GABA(c) receptors. The results indicated that calycanthine may mediate its convulsant action predominantly by inhibiting the release of the inhibitory neurotransmitter GABA as a result of interactions with L-type Ca(2+) channels and by inhibiting GABA-mediated chloride currents at GABA(A) receptors.

UI MeSH Term Description Entries
D009287 Naphthyridines A group of two-ring heterocyclic compounds consisting of a NAPHTHALENES double ring in which two carbon atoms, one per each ring, are replaced with nitrogens.
D009447 Neuroblastoma A common neoplasm of early childhood arising from neural crest cells in the sympathetic nervous system, and characterized by diverse clinical behavior, ranging from spontaneous remission to rapid metastatic progression and death. This tumor is the most common intraabdominal malignancy of childhood, but it may also arise from thorax, neck, or rarely occur in the central nervous system. Histologic features include uniform round cells with hyperchromatic nuclei arranged in nests and separated by fibrovascular septa. Neuroblastomas may be associated with the opsoclonus-myoclonus syndrome. (From DeVita et al., Cancer: Principles and Practice of Oncology, 5th ed, pp2099-2101; Curr Opin Oncol 1998 Jan;10(1):43-51) Neuroblastomas
D009865 Oocytes Female germ cells derived from OOGONIA and termed OOCYTES when they enter MEIOSIS. The primary oocytes begin meiosis but are arrested at the diplotene state until OVULATION at PUBERTY to give rise to haploid secondary oocytes or ova (OVUM). Ovocytes,Oocyte,Ovocyte
D011963 Receptors, GABA-A Cell surface proteins which bind GAMMA-AMINOBUTYRIC ACID and contain an integral membrane chloride channel. Each receptor is assembled as a pentamer from a pool of at least 19 different possible subunits. The receptors belong to a superfamily that share a common CYSTEINE loop. Benzodiazepine-Gaba Receptors,GABA-A Receptors,Receptors, Benzodiazepine,Receptors, Benzodiazepine-GABA,Receptors, Diazepam,Receptors, GABA-Benzodiazepine,Receptors, Muscimol,Benzodiazepine Receptor,Benzodiazepine Receptors,Benzodiazepine-GABA Receptor,Diazepam Receptor,Diazepam Receptors,GABA(A) Receptor,GABA-A Receptor,GABA-A Receptor alpha Subunit,GABA-A Receptor beta Subunit,GABA-A Receptor delta Subunit,GABA-A Receptor epsilon Subunit,GABA-A Receptor gamma Subunit,GABA-A Receptor rho Subunit,GABA-Benzodiazepine Receptor,GABA-Benzodiazepine Receptors,Muscimol Receptor,Muscimol Receptors,delta Subunit, GABA-A Receptor,epsilon Subunit, GABA-A Receptor,gamma-Aminobutyric Acid Subtype A Receptors,Benzodiazepine GABA Receptor,Benzodiazepine Gaba Receptors,GABA A Receptor,GABA A Receptor alpha Subunit,GABA A Receptor beta Subunit,GABA A Receptor delta Subunit,GABA A Receptor epsilon Subunit,GABA A Receptor gamma Subunit,GABA A Receptor rho Subunit,GABA A Receptors,GABA Benzodiazepine Receptor,GABA Benzodiazepine Receptors,Receptor, Benzodiazepine,Receptor, Benzodiazepine-GABA,Receptor, Diazepam,Receptor, GABA-A,Receptor, GABA-Benzodiazepine,Receptor, Muscimol,Receptors, Benzodiazepine GABA,Receptors, GABA A,Receptors, GABA Benzodiazepine,delta Subunit, GABA A Receptor,epsilon Subunit, GABA A Receptor,gamma Aminobutyric Acid Subtype A Receptors
D002531 Cerebellum The part of brain that lies behind the BRAIN STEM in the posterior base of skull (CRANIAL FOSSA, POSTERIOR). It is also known as the "little brain" with convolutions similar to those of CEREBRAL CORTEX, inner white matter, and deep cerebellar nuclei. Its function is to coordinate voluntary movements, maintain balance, and learn motor skills. Cerebella,Corpus Cerebelli,Parencephalon,Cerebellums,Parencephalons
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D003292 Convulsants Substances that act in the brain stem or spinal cord to produce tonic or clonic convulsions, often by removing normal inhibitory tone. They were formerly used to stimulate respiration or as antidotes to barbiturate overdose. They are now most commonly used as experimental tools. Convulsant,Convulsant Effect,Convulsant Effects,Effect, Convulsant,Effects, Convulsant
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005680 gamma-Aminobutyric Acid The most common inhibitory neurotransmitter in the central nervous system. 4-Aminobutyric Acid,GABA,4-Aminobutanoic Acid,Aminalon,Aminalone,Gammalon,Lithium GABA,gamma-Aminobutyric Acid, Calcium Salt (2:1),gamma-Aminobutyric Acid, Hydrochloride,gamma-Aminobutyric Acid, Monolithium Salt,gamma-Aminobutyric Acid, Monosodium Salt,gamma-Aminobutyric Acid, Zinc Salt (2:1),4 Aminobutanoic Acid,4 Aminobutyric Acid,Acid, Hydrochloride gamma-Aminobutyric,GABA, Lithium,Hydrochloride gamma-Aminobutyric Acid,gamma Aminobutyric Acid,gamma Aminobutyric Acid, Hydrochloride,gamma Aminobutyric Acid, Monolithium Salt,gamma Aminobutyric Acid, Monosodium Salt

Related Publications

Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
January 1970, Pharmacology,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
January 1947, Federation proceedings,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
April 1973, Brain research,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
November 1981, Neurology,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
June 1999, Brain research,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
July 1965, Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
October 1980, Brain research,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
July 1984, The Journal of pharmacology and experimental therapeutics,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
January 1984, European journal of pharmacology,
Mary Chebib, and Rujee K Duke, and Colin C Duke, and Mark Connor, and Kenneth N Mewett, and Graham A R Johnston
October 2015, The Journal of organic chemistry,
Copied contents to your clipboard!