Inhibitors of p38 mitogen-activated protein kinase for the treatment of rheumatoid arthritis. 2003

Christopher Pargellis, and John Regan
Department of Immunology/Inflammation Chemistry, Boehringer Ingelheim Pharmaceuticals Research and Development Center, 900 Ridgebury Road, Ridgefield, CT 06877, USA. cpargell@rdg.Boehringer-Ingelheim.com

The p38 mitogen-activated protein kinase pathway is involved in a number of cellular processes critical to the development of rheumatoid arthritis. The activation and infiltration of leukocytes as well as the production of inflammatory cytokines are p38-dependent processes. In addition, p38 regulates the differentiation of osteoclasts, which are directly involved in bone loss. Numerous inhibitors of p38 have demonstrated efficacy in animal models of arthritic disease and at least two p38 inhibitors are currently in phase II clinical trials for rheumatoid arthritis. Several other p38 inhibitors are currently undergoing phase I clinical trials.

UI MeSH Term Description Entries
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001172 Arthritis, Rheumatoid A chronic systemic disease, primarily of the joints, marked by inflammatory changes in the synovial membranes and articular structures, widespread fibrinoid degeneration of the collagen fibers in mesenchymal tissues, and by atrophy and rarefaction of bony structures. Etiology is unknown, but autoimmune mechanisms have been implicated. Rheumatoid Arthritis
D017322 Clinical Trials, Phase II as Topic Works about studies that are usually controlled to assess the effectiveness and dosage (if appropriate) of diagnostic, therapeutic, or prophylactic drugs, devices, or techniques. These studies are performed on several hundred volunteers, including a limited number of patients with the target disease or disorder, and last about two years. This concept includes phase II studies conducted in both the U.S. and in other countries. Drug Evaluation, FDA Phase 2 as Topic,Drug Evaluation, FDA Phase II as Topic,Evaluation Studies, FDA Phase 2 as Topic,Evaluation Studies, FDA Phase II as Topic
D048051 p38 Mitogen-Activated Protein Kinases A mitogen-activated protein kinase subfamily that regulates a variety of cellular processes including CELL GROWTH PROCESSES; CELL DIFFERENTIATION; APOPTOSIS; and cellular responses to INFLAMMATION. The P38 MAP kinases are regulated by CYTOKINE RECEPTORS and can be activated in response to bacterial pathogens. Mitogen-Activated Protein Kinase p38,p38 Mitogen-Activated Protein Kinase,p38 MAP Kinase,p38 MAPK,p38 Protein Kinase,p38 SAPK,MAP Kinase, p38,MAPK, p38,Mitogen Activated Protein Kinase p38,Protein Kinase, p38,p38 Mitogen Activated Protein Kinase,p38 Mitogen Activated Protein Kinases
D020928 Mitogen-Activated Protein Kinases A superfamily of PROTEIN SERINE-THREONINE KINASES that are activated by diverse stimuli via protein kinase cascades. They are the final components of the cascades, activated by phosphorylation by MITOGEN-ACTIVATED PROTEIN KINASE KINASES, which in turn are activated by mitogen-activated protein kinase kinase kinases (MAP KINASE KINASE KINASES). Mitogen Activated Protein Kinase,Mitogen-Activated Protein Kinase,Kinase, Mitogen-Activated Protein,Kinases, Mitogen-Activated Protein,Mitogen Activated Protein Kinases,Protein Kinase, Mitogen-Activated,Protein Kinases, Mitogen-Activated

Related Publications

Christopher Pargellis, and John Regan
August 2006, Mini reviews in medicinal chemistry,
Christopher Pargellis, and John Regan
July 2008, Annals of the rheumatic diseases,
Christopher Pargellis, and John Regan
September 2003, Current opinion in investigational drugs (London, England : 2000),
Christopher Pargellis, and John Regan
September 2005, Mini reviews in medicinal chemistry,
Christopher Pargellis, and John Regan
January 1999, Pharmacology & therapeutics,
Christopher Pargellis, and John Regan
May 2021, Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research,
Christopher Pargellis, and John Regan
September 2016, Journal of thoracic disease,
Christopher Pargellis, and John Regan
May 2011, World journal of biological chemistry,
Christopher Pargellis, and John Regan
January 2021, Medicinal chemistry (Shariqah (United Arab Emirates)),
Copied contents to your clipboard!