Induction of DNA strand breaks by trihalomethanes in primary human lung epithelial cells. 2003

Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
US Environmental Protection Agency, National Health and Environmental, Effects Research Laboratory, Research Triangle Park, NC 27711, USA.

Trihalomethanes (THMs) are disinfection by-products and suspected human carcinogens present in chlorinated drinking water. Previous studies have shown that many THMs induce sister chromatid exchanges and DNA strand breaks in human peripheral blood lymphocytes in vitro. Exposure to THMs occurs through oral, dermal, or inhalation routes, with the lung being a target of exposure by the latter route, although not a target for rodent carcinogenicity. Thus, to examine the genotoxicity of THMs in this tissue, we used the comet assay to examine the DNA damaging ability of five THMs in primary human lung epithelial cells. Cells were collected by scraping the large airways of four volunteers with a cytology brush and then passaging the cells no more than three times in order to have sufficient numbers for the experiments. Cells were exposed for 3h to 10, 100, or 1000 microM CHCl(3), CHCl(2)Br, CHClBr(2), or CHBr(3); CH(2)Cl(2) was also used as a model dihalomethane for comparison to the THMs. The compounds ranked as follows for DNA damaging ability: CHCl(2)Br>CHBr(3)>CHCl(3) approximately equal CH(2)Cl(2); CHClBr(2) was negative. Considerable inter-individual variation was observed. For example, CHCl(3) was genotoxic in only two subjects, and the interaction between dose and donor was highly significant (P<0.001). The same variation was observed for CHCl(2)Br, which was positive only in the two subjects in which CHCl(3) was negative. This variation was not due to the GSTT1-1 genotype of the subjects. Although two subjects were GSTT1-1(+), and two were GSTT1-1(-), no cultured cells with a GSTT1-1(+) genotype had detectable GSTT1-1 enzymatic activity nor did any frozen epithelial cells that had not been cultured. However, GSTT1-1 enzymatic activity was detected in fresh (neither frozen nor cultured) lung cells. These results show that freezing or culturing causes lung cells to lose GSTT1-1 activity and that factors other than GSTT1-1 activity play a role in the variable responses of these human cells to the genotoxicity of the halomethanes studied here.

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D009153 Mutagens Chemical agents that increase the rate of genetic mutation by interfering with the function of nucleic acids. A clastogen is a specific mutagen that causes breaks in chromosomes. Clastogen,Clastogens,Genotoxin,Genotoxins,Mutagen
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002851 Chromatography, High Pressure Liquid Liquid chromatographic techniques which feature high inlet pressures, high sensitivity, and high speed. Chromatography, High Performance Liquid,Chromatography, High Speed Liquid,Chromatography, Liquid, High Pressure,HPLC,High Performance Liquid Chromatography,High-Performance Liquid Chromatography,UPLC,Ultra Performance Liquid Chromatography,Chromatography, High-Performance Liquid,High-Performance Liquid Chromatographies,Liquid Chromatography, High-Performance
D003600 Cytosol Intracellular fluid from the cytoplasm after removal of ORGANELLES and other insoluble cytoplasmic components. Cytosols
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005838 Genotype The genetic constitution of the individual, comprising the ALLELES present at each GENETIC LOCUS. Genogroup,Genogroups,Genotypes
D005982 Glutathione Transferase A transferase that catalyzes the addition of aliphatic, aromatic, or heterocyclic FREE RADICALS as well as EPOXIDES and arene oxides to GLUTATHIONE. Addition takes place at the SULFUR. It also catalyzes the reduction of polyol nitrate by glutathione to polyol and nitrite. Glutathione S-Alkyltransferase,Glutathione S-Aryltransferase,Glutathione S-Epoxidetransferase,Ligandins,S-Hydroxyalkyl Glutathione Lyase,Glutathione Organic Nitrate Ester Reductase,Glutathione S-Transferase,Glutathione S-Transferase 3,Glutathione S-Transferase A,Glutathione S-Transferase B,Glutathione S-Transferase C,Glutathione S-Transferase III,Glutathione S-Transferase P,Glutathione Transferase E,Glutathione Transferase mu,Glutathione Transferases,Heme Transfer Protein,Ligandin,Yb-Glutathione-S-Transferase,Glutathione Lyase, S-Hydroxyalkyl,Glutathione S Alkyltransferase,Glutathione S Aryltransferase,Glutathione S Epoxidetransferase,Glutathione S Transferase,Glutathione S Transferase 3,Glutathione S Transferase A,Glutathione S Transferase B,Glutathione S Transferase C,Glutathione S Transferase III,Glutathione S Transferase P,Lyase, S-Hydroxyalkyl Glutathione,P, Glutathione S-Transferase,Protein, Heme Transfer,S Hydroxyalkyl Glutathione Lyase,S-Alkyltransferase, Glutathione,S-Aryltransferase, Glutathione,S-Epoxidetransferase, Glutathione,S-Transferase 3, Glutathione,S-Transferase A, Glutathione,S-Transferase B, Glutathione,S-Transferase C, Glutathione,S-Transferase III, Glutathione,S-Transferase P, Glutathione,S-Transferase, Glutathione,Transfer Protein, Heme,Transferase E, Glutathione,Transferase mu, Glutathione,Transferase, Glutathione,Transferases, Glutathione

Related Publications

Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
November 1998, Toxicological sciences : an official journal of the Society of Toxicology,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
September 1980, Cancer letters,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
November 2000, Die Pharmazie,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
November 2011, International journal of radiation biology,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
November 2011, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
January 2002, Radiation protection dosimetry,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
January 1994, Environmental and molecular mutagenesis,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
June 2006, International journal of oncology,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
May 1993, Current eye research,
Stefano Landi, and Alessio Naccarati, and Matthew K Ross, and Nancy M Hanley, and Lisa Dailey, and Robert B Devlin, and Marie Vasquez, and Rex A Pegram, and David M DeMarini
October 2005, Mutation research,
Copied contents to your clipboard!