Effect of hyperthermia on the antitumor actions of interferons. 1992

A Anjum, and W R Fleischmann
Department of Microbiology, University of Texas Medical Branch, Galveston.

Hyperthermia treatment has been shown to enhance the in vitro antiproliferative effects of IFN-alpha, IFN-beta, and IFN-gamma, with IFN-gamma being more strongly enhanced than IFN-alpha. The comparative effects of hyperthermia on the in vivo antitumor activities of IFN-alpha and IFN-gamma were evaluated in the murine system using both subcutaneous and intraperitoneal B16 melanoma tumor model systems. Heat-induced whole body hyperthermia, resulting in a 2 degree C rise in body temperature, was administered by incubating the mice for 8 hours in a dry incubator at 37.1 degrees C. Whole body hyperthermia was found to enhance the antitumor activity of IFN-alpha by approximately 1.0 fold and 1.2 fold for the subcutaneous and intraperitoneal tumor models, respectively. This represented an additive effect of hyperthermia and IFN-alpha. Hyperthermia was found to enhance the antitumor activity of IFN-gamma by approximately 2.9 fold and 2.2 fold for the subcutaneous and intraperitoneal tumor models, respectively. This represented a synergistic effect of hyperthermia and IFN-gamma. The results of this in vivo study confirm and extend the in vitro observation that hyperthermia more strongly enhances the antitumor action of IFN-gamma than IFN-alpha. These results may have clinical importance because they suggest that hyperthermia may be used in combination with IFN-gamma to provide a synergistically enhanced antitumor action.

UI MeSH Term Description Entries
D006979 Hyperthermia, Induced Abnormally high temperature intentionally induced in living things regionally or whole body. It is most often induced by radiation (heat waves, infra-red), ultrasound, or drugs. Fever Therapy,Hyperthermia, Local,Hyperthermia, Therapeutic,Thermotherapy,Induced Hyperthermia,Therapeutic Hyperthermia,Therapy, Fever,Local Hyperthermia
D007372 Interferons Proteins secreted by vertebrate cells in response to a wide variety of inducers. They confer resistance against many different viruses, inhibit proliferation of normal and malignant cells, impede multiplication of intracellular parasites, enhance macrophage and granulocyte phagocytosis, augment natural killer cell activity, and show several other immunomodulatory functions. Interferon
D008546 Melanoma, Experimental Experimentally induced tumor that produces MELANIN in animals to provide a model for studying human MELANOMA. B16 Melanoma,Melanoma, B16,Melanoma, Cloudman S91,Melanoma, Harding-Passey,Experimental Melanoma,Experimental Melanomas,Harding Passey Melanoma,Melanomas, Experimental,B16 Melanomas,Cloudman S91 Melanoma,Harding-Passey Melanoma,Melanoma, Harding Passey,Melanomas, B16,S91 Melanoma, Cloudman
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D003131 Combined Modality Therapy The treatment of a disease or condition by several different means simultaneously or sequentially. Chemoimmunotherapy, RADIOIMMUNOTHERAPY, chemoradiotherapy, cryochemotherapy, and SALVAGE THERAPY are seen most frequently, but their combinations with each other and surgery are also used. Multimodal Treatment,Therapy, Combined Modality,Combined Modality Therapies,Modality Therapies, Combined,Modality Therapy, Combined,Multimodal Treatments,Therapies, Combined Modality,Treatment, Multimodal,Treatments, Multimodal
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

A Anjum, and W R Fleischmann
January 1984, Gan to kagaku ryoho. Cancer & chemotherapy,
A Anjum, and W R Fleischmann
February 1986, Gan to kagaku ryoho. Cancer & chemotherapy,
A Anjum, and W R Fleischmann
November 1987, International journal of dermatology,
A Anjum, and W R Fleischmann
October 2001, Clinical microbiology reviews,
A Anjum, and W R Fleischmann
January 1987, Journal of experimental pathology,
A Anjum, and W R Fleischmann
June 2008, Journal of cancer research and clinical oncology,
A Anjum, and W R Fleischmann
March 1987, Gan to kagaku ryoho. Cancer & chemotherapy,
A Anjum, and W R Fleischmann
November 2007, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
A Anjum, and W R Fleischmann
January 1987, Annual review of biochemistry,
A Anjum, and W R Fleischmann
January 1994, Vnitrni lekarstvi,
Copied contents to your clipboard!