Sterol absorption by the small intestine. 2003

Stephen D Turley, and John M Dietschy
Department of Internal Medicine, The University of Texas Southwestern Medical Center at Dallas, TX 75390-8887, USA. stephen.turley@utsouthwestern.edu

OBJECTIVE Cholesterol absorption is a selective process in that plant sterols and other non-cholesterol sterols are absorbed poorly or not at all. Recent research on the sterol efflux pumps adenosine triphosphate-binding cassette transporter G5 and adenosine triphosphate-binding cassette transporter G8 has not only provided an explanation for this selectivity, but also, together with the discovery of a new class of cholesterol absorption inhibitor, has yielded new insights into the mechanisms that potentially regulate the flux of cholesterol across the enterocyte. This review discusses these recent developments and their importance to the regulation of whole body cholesterol homeostasis. RESULTS Adenosine triphosphate-binding cassette transporters G5/8 regulate plant sterol absorption and also the secretion into bile of cholesterol and non-cholesterol sterols. Loss of adenosine triphosphate-binding cassette transporter G5/8 function results in sitosterolemia. Ezetimibe, a novel, potent and selective inhibitor of cholesterol absorption which is effective in milligram doses, lowers plasma plant sterol concentrations in sitosterolemic subjects, thus suggesting that this drug might be inhibiting the activity of a putative sterol permease in the brush border membrane of the enterocyte that actively facilitates the uptake of cholesterol as well as other non-cholesterol sterols. CONCLUSIONS Intestinal cholesterol absorption represents a major route for the entry of cholesterol into the body's miscible pools and therefore can potentially impact the plasma LDL-cholesterol concentration. The combined use of agents that inhibit the absorption and synthesis of cholesterol provides a powerful new approach to the prevention and treatment of atherosclerosis.

UI MeSH Term Description Entries
D007408 Intestinal Absorption Uptake of substances through the lining of the INTESTINES. Absorption, Intestinal
D007421 Intestine, Small The portion of the GASTROINTESTINAL TRACT between the PYLORUS of the STOMACH and the ILEOCECAL VALVE of the LARGE INTESTINE. It is divisible into three portions: the DUODENUM, the JEJUNUM, and the ILEUM. Small Intestine,Intestines, Small,Small Intestines
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D013261 Sterols Steroids with a hydroxyl group at C-3 and most of the skeleton of cholestane. Additional carbon atoms may be present in the side chain. (IUPAC Steroid Nomenclature, 1987) Sterol
D018528 ATP-Binding Cassette Transporters A family of MEMBRANE TRANSPORT PROTEINS that require ATP hydrolysis for the transport of substrates across membranes. The protein family derives its name from the ATP-binding domain found on the protein. ABC Transporter,ABC Transporters,ATP-Binding Cassette Transporter,ATP Binding Cassette Transporter,ATP Binding Cassette Transporters,Cassette Transporter, ATP-Binding,Transporter, ABC,Transporter, ATP-Binding Cassette,Transporters, ABC,Transporters, ATP-Binding Cassette
D020895 Enterocytes Absorptive cells in the lining of the INTESTINAL MUCOSA. They are differentiated EPITHELIAL CELLS with apical MICROVILLI facing the intestinal lumen. Enterocytes are more abundant in the SMALL INTESTINE than in the LARGE INTESTINE. Their microvilli greatly increase the luminal surface area of the cell by 14- to 40 fold. Enterocyte

Related Publications

Stephen D Turley, and John M Dietschy
January 1984, Acta vitaminologica et enzymologica,
Stephen D Turley, and John M Dietschy
April 1974, Comparative biochemistry and physiology. A, Comparative physiology,
Stephen D Turley, and John M Dietschy
January 1962, Federation proceedings,
Stephen D Turley, and John M Dietschy
January 1963, The Scientific basis of medicine annual reviews,
Stephen D Turley, and John M Dietschy
January 1993, Biological trace element research,
Stephen D Turley, and John M Dietschy
April 1989, Transplantation,
Stephen D Turley, and John M Dietschy
September 1963, Nature,
Stephen D Turley, and John M Dietschy
January 1966, Biulleten' eksperimental'noi biologii i meditsiny,
Stephen D Turley, and John M Dietschy
January 2011, Annual review of physiology,
Copied contents to your clipboard!