Stretch-activated anion currents of rabbit cardiac myocytes. 1992

N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
Heart Institute of Japan, Tokyo Women's Medical College.

1. Stretch-activated anion currents were studied in sino-atrial and atrial cells using the whole-cell patch clamp technique. With continuous application of positive pressure (5-15 cmH2O) through the patch clamp electrode, the cell was inflated and the membrane conductance was increased. 2. Voltage clamp steps revealed that the stretch-activated currents had time-independent characteristics. The increase in membrane conductance was reversible on subsequent application of negative pressure to the electrode. 3. The reversal potential of the stretch-activated currents was shifted by 60 mV for a 10-fold change in intracellular Cl- concentration, while it was unaffected by replacement of Na+ in the extracellular solution by N-methyl-D-glucamine. Cell superfusion with Cl(-)-deficient solution (10 mM Cl-) reduced the amplitude of outward current. These findings indicate that the stretch-activated conductance is Cl- selective. 4. The sequence of anion permeability through the stretch-activated conductance was determined to be I-(1.7) > NO3-(1.5) > Br-(1.2) > Cl-(1.0) > and F-(0.6). SCN- appeared to be more permeant than I-. 5. The stretch-activated conductance was reduced by the Cl- channel blockers, 4,4'-dinitrostilbene-2,2'-disulphonic acid disodium salt, 4-acetamido-4'-isothiocyanatostilbene-2,2'-disulphonic acid or anthracene-9-carboxylate (9-AC). Administration of furosemide or bumetanide had no effect. 6. The stretch-activated Cl- current was recorded even though intracellular Ca2+ ions were chelated by including 10 mM EGTA in the pipette solution. Neither the specific peptide inhibitor of cyclic AMP-dependent protein kinase (50 microM), nor the non-selective blocker of protein kinases, H-7 (20 microM), was effective in reducing the stretch-activated Cl- current, suggesting that the stretch-activated Cl- current is a novel type of cardiac Cl- current, which shows a different modulatory mechanism from that of other cardiac Cl- currents.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012849 Sinoatrial Node The small mass of modified cardiac muscle fibers located at the junction of the superior vena cava (VENA CAVA, SUPERIOR) and right atrium. Contraction impulses probably start in this node, spread over the atrium (HEART ATRIUM) and are then transmitted by the atrioventricular bundle (BUNDLE OF HIS) to the ventricle (HEART VENTRICLE). Sinuatrial Node,Sinus Node,Sino-Atrial Node,Sinu-Atrial Node,Node, Sino-Atrial,Node, Sinoatrial,Node, Sinu-Atrial,Node, Sinuatrial,Node, Sinus,Nodes, Sino-Atrial,Nodes, Sinoatrial,Nodes, Sinu-Atrial,Nodes, Sinuatrial,Nodes, Sinus,Sino Atrial Node,Sino-Atrial Nodes,Sinoatrial Nodes,Sinu Atrial Node,Sinu-Atrial Nodes,Sinuatrial Nodes,Sinus Nodes
D012856 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid A non-penetrating amino reagent (commonly called SITS) which acts as an inhibitor of anion transport in erythrocytes and other cells. 4-Acetamido-4'-isothiocyanatostilbene-2,2'-disulfonic Acid, Disodium Salt,SITS,SITS Disodium Salt,4 Acetamido 4' isothiocyanatostilbene 2,2' disulfonic Acid,Disodium Salt, SITS
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
September 2005, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
February 2000, American journal of physiology. Heart and circulatory physiology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
May 2003, Pflugers Archiv : European journal of physiology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
September 1990, Nature,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
January 2008, Progress in biophysics and molecular biology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
June 2003, Pflugers Archiv : European journal of physiology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
December 2000, Cardiovascular research,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
August 1993, IEEE transactions on bio-medical engineering,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
September 1994, Journal of molecular and cellular cardiology,
N Hagiwara, and H Masuda, and M Shoda, and H Irisawa
April 1996, FASEB journal : official publication of the Federation of American Societies for Experimental Biology,
Copied contents to your clipboard!