Oxytocin actions on voltage-dependent ionic channels in pregnant rat uterine smooth muscle cells. 1992

Y Inoue, and K Shimamura, and N Sperelakis
Department of Physiology and Biophysics, College of Medicine, University of Cincinnati, Ohio 45267-0576.

The effects of oxytocin, a uterotonic polypeptide hormone, on the voltage-dependent slow calcium, fast sodium, and potassium channel currents were studied using whole-cell voltage clamp of freshly isolated cells from late pregnant (18-21 day) rat myometrium. The calcium current was rapidly inhibited by oxytocin (about 25% inhibition at 20 nM) in a dose-dependent manner, and this inhibitory effect was completely reversible by washout. However, inhibition was not observed when barium was used as the charge carrier. Sodium current and potassium current were not modified by oxytocin, thus sodium and potassium currents may not play important roles in oxytocin-induced augmentation of uterine contraction. It is concluded that oxytocin stimulates uterine contraction by mechanisms other than augmentation of the voltage-dependent calcium current, e.g., by release of Ca from sarcoplasmic reticulum (by inositol triphosphate) or by activation of a receptor-operated Ca channel. The inhibition of the slow calcium current may be induced by the elevation of [Ca]i.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D010121 Oxytocin A nonapeptide hormone released from the neurohypophysis (PITUITARY GLAND, POSTERIOR). It differs from VASOPRESSIN by two amino acids at residues 3 and 8. Oxytocin acts on SMOOTH MUSCLE CELLS, such as causing UTERINE CONTRACTIONS and MILK EJECTION. Ocytocin,Pitocin,Syntocinon
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012519 Sarcoplasmic Reticulum A network of tubules and sacs in the cytoplasm of SKELETAL MUSCLE FIBERS that assist with muscle contraction and relaxation by releasing and storing calcium ions. Reticulum, Sarcoplasmic,Reticulums, Sarcoplasmic,Sarcoplasmic Reticulums
D014599 Uterus The hollow thick-walled muscular organ in the female PELVIS. It consists of the fundus which is the site of EMBRYO IMPLANTATION and FETAL DEVELOPMENT. Beyond the isthmus at the perineal end of fundus, is CERVIX UTERI (the neck) opening into VAGINA. Beyond the isthmi at the upper abdominal end of fundus, are the FALLOPIAN TUBES. Fundus Uteri,Uteri,Uterine Cornua,Uterine Fundus,Uterus Cornua,Womb,Cornua, Uterine,Fundus Uterus,Fundus, Uterine,Uteri, Fundus,Wombs
D015220 Calcium Channels Voltage-dependent cell membrane glycoproteins selectively permeable to calcium ions. They are categorized as L-, T-, N-, P-, Q-, and R-types based on the activation and inactivation kinetics, ion specificity, and sensitivity to drugs and toxins. The L- and T-types are present throughout the cardiovascular and central nervous systems and the N-, P-, Q-, & R-types are located in neuronal tissue. Ion Channels, Calcium,Receptors, Calcium Channel Blocker,Voltage-Dependent Calcium Channel,Calcium Channel,Calcium Channel Antagonist Receptor,Calcium Channel Antagonist Receptors,Calcium Channel Blocker Receptor,Calcium Channel Blocker Receptors,Ion Channel, Calcium,Receptors, Calcium Channel Antagonist,VDCC,Voltage-Dependent Calcium Channels,Calcium Channel, Voltage-Dependent,Calcium Channels, Voltage-Dependent,Calcium Ion Channel,Calcium Ion Channels,Channel, Voltage-Dependent Calcium,Channels, Voltage-Dependent Calcium,Voltage Dependent Calcium Channel,Voltage Dependent Calcium Channels

Related Publications

Y Inoue, and K Shimamura, and N Sperelakis
January 1988, Journal of cardiovascular pharmacology,
Y Inoue, and K Shimamura, and N Sperelakis
January 1997, Kidney & blood pressure research,
Y Inoue, and K Shimamura, and N Sperelakis
September 2005, Yao xue xue bao = Acta pharmaceutica Sinica,
Y Inoue, and K Shimamura, and N Sperelakis
January 1989, Comparative biochemistry and physiology. A, Comparative physiology,
Y Inoue, and K Shimamura, and N Sperelakis
August 2002, Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology,
Y Inoue, and K Shimamura, and N Sperelakis
January 1992, Japanese journal of pharmacology,
Y Inoue, and K Shimamura, and N Sperelakis
January 1976, The Journal of physiology,
Y Inoue, and K Shimamura, and N Sperelakis
November 1990, Molecular pharmacology,
Y Inoue, and K Shimamura, and N Sperelakis
January 2011, Pulmonary circulation,
Y Inoue, and K Shimamura, and N Sperelakis
May 1991, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme,
Copied contents to your clipboard!