Functional interactions of ligand cofactors with Escherichia coli transcription termination factor rho. II. Binding of RNA. 1992

J Geiselmann, and T D Yager, and P H von Hippel
Institute of Molecular Biology, University of Oregon, Eugene 97403.

The rho protein of Escherichia coli interacts with the nascent RNA transcript while RNA polymerase is paused at specific rho-dependent termination sites on the DNA template, and (in a series of steps that are still largely undefined) brings about transcript termination at these sites. In this paper we characterize the interactions of rho with RNA and relate these interactions to the quaternary structure of the functional form of rho. We use CD spectroscopy and analytical ultracentrifugation to determine the binding interactions of rho with RNA ligands of defined length ([rC]n where n > or = 6). Rho binds to long RNA chains as a hexamer characterized by D3 symmetry. Each hexamer binds approximately 70 residues of RNA. We show by ultracentrifugation and dynamic laser light scattering that, in the presence of RNA ligands less than 22 nucleotide residues in length, rho changes its quaternary structure and becomes a homogeneous dodecamer. The dodecamer contains six strong binding sites for short RNA ligands: i.e., one site for every two rho protomers. The measured association constant of these short RNAs to rho increases with increasing (rC)n length, up to n = 9, suggesting that the binding site of each rho protomer interacts with 9 RNA nucleotide residues. Oligo (rC) ligands bound to the strong RNA binding sites on the rho dodecamer do not significantly stimulate the RNA-dependent ATPase activity of rho. Based on these features of the rho-RNA interaction and other experimental data we propose a molecular model of the interaction of rho with its cofactors.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D009690 Nucleic Acid Conformation The spatial arrangement of the atoms of a nucleic acid or polynucleotide that results in its characteristic 3-dimensional shape. DNA Conformation,RNA Conformation,Conformation, DNA,Conformation, Nucleic Acid,Conformation, RNA,Conformations, DNA,Conformations, Nucleic Acid,Conformations, RNA,DNA Conformations,Nucleic Acid Conformations,RNA Conformations
D009843 Oligoribonucleotides A group of ribonucleotides (up to 12) in which the phosphate residues of each ribonucleotide act as bridges in forming diester linkages between the ribose moieties.
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining
D012234 Rho Factor A protein which effects termination of RNA synthesis during the genetic transcription process by dissociating the ternary transcription complex RNA;-RNA POLYMERASE DNA at the termination of a gene. E Coli Transcription Termination Factor,Factor, Rho

Related Publications

J Geiselmann, and T D Yager, and P H von Hippel
July 1992, Protein science : a publication of the Protein Society,
J Geiselmann, and T D Yager, and P H von Hippel
July 1993, The Journal of biological chemistry,
J Geiselmann, and T D Yager, and P H von Hippel
February 1988, Journal of molecular biology,
J Geiselmann, and T D Yager, and P H von Hippel
November 2006, The Journal of biological chemistry,
J Geiselmann, and T D Yager, and P H von Hippel
July 1993, The Journal of biological chemistry,
J Geiselmann, and T D Yager, and P H von Hippel
April 2001, The Journal of biological chemistry,
J Geiselmann, and T D Yager, and P H von Hippel
April 2004, The Journal of biological chemistry,
J Geiselmann, and T D Yager, and P H von Hippel
October 1996, The Journal of biological chemistry,
Copied contents to your clipboard!