Differential brain distribution of gonadotropin-releasing hormone receptors in the goldfish. 2003

Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
Department of Biological Sciences, University of Alberta, Alta., T6G 2E9 Edmonton, Canada. dick.peter@ualberta.ca

The present study describes the differential distributions in the brain of the two goldfish gonadotropin-releasing hormone (GnRH) receptors, using both immunohistochemistry and in situ hybridization approaches. The goldfish GnRH GfA and GfB receptors are variant forms of the same receptor subtype, although with distinct differences in ligand binding characteristics, and differential distributions in the pituitary and body tissues [Proc. Natl. Acad. Sci. USA 96 (1999) 2526]. The goldfish GnRH GfA receptor was found to be widespread throughout the brain, with neurons showing immunoreactivity in the olfactory bulbs, telencephalon, preoptic region, ventro-basal hypothalamus, thalamus, midbrain, motor neurons of the fifth, seventh, and tenth cranial nerves, reticular formation, cerebellum, and motor zone of the vagal lobes. The tracts in the posterior commissure, optic tectum, and motor zone of the vagal lobes also demonstrated immunoreactivity. While the brain was not systematically surveyed for in situ hybridization, hybridization was found in similar locations in the telencephalon, preoptic region, ventro-basal hypothalamus, cerebellum, and optic tectum. Hybridization was additionally found in the medial hypothalamus. The goldfish GnRH GfB receptor was found to have a more restricted distribution in the brain, with neurons showing immunoreactivity in the telencephalon, preoptic region, and ventro-basal hypothalamus. In situ hybridization demonstrated a somewhat wider distribution of expression of the receptor, with hybridization occurring in the preoptic region, ventro-basal and medial hypothalamus, as well as in the thalamus, epithalamus, and optic tectum. The widespread distribution of GnRH GfA receptor, and in particular its localization in the midbrain tegmentum in the region of the GnRH-II neurons, suggests that this receptor may be involved in the behavioral actions of GnRH peptides in the goldfish.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D009928 Organ Specificity Characteristic restricted to a particular organ of the body, such as a cell type, metabolic response or expression of a particular protein or antigen. Tissue Specificity,Organ Specificities,Specificities, Organ,Specificities, Tissue,Specificity, Organ,Specificity, Tissue,Tissue Specificities
D010902 Pituitary Gland A small, unpaired gland situated in the SELLA TURCICA. It is connected to the HYPOTHALAMUS by a short stalk which is called the INFUNDIBULUM. Hypophysis,Hypothalamus, Infundibular,Infundibular Stalk,Infundibular Stem,Infundibulum (Hypophysis),Infundibulum, Hypophyseal,Pituitary Stalk,Hypophyseal Infundibulum,Hypophyseal Stalk,Hypophysis Cerebri,Infundibulum,Cerebri, Hypophysis,Cerebrus, Hypophysis,Gland, Pituitary,Glands, Pituitary,Hypophyseal Stalks,Hypophyses,Hypophysis Cerebrus,Infundibular Hypothalamus,Infundibular Stalks,Infundibulums,Pituitary Glands,Pituitary Stalks,Stalk, Hypophyseal,Stalk, Infundibular,Stalks, Hypophyseal,Stalks, Infundibular
D011966 Receptors, LHRH Receptors with a 6-kDa protein on the surfaces of cells that secrete LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE, usually in the adenohypophysis. LUTEINIZING HORMONE-RELEASING HORMONE binds to these receptors, is endocytosed with the receptor and, in the cell, triggers the release of LUTEINIZING HORMONE or FOLLICLE STIMULATING HORMONE by the cell. These receptors are also found in rat gonads. INHIBINS prevent the binding of GnRH to its receptors. GnRH Receptors,Gonadoliberin Receptors,Gonadorelin Receptors,Gonadotropin Releasing-Hormone Receptors,LHFSHRH Receptors,LHRH Receptors,Luliberin Receptors,Receptors, GnRH,Receptors, Gonadoliberin,Receptors, Gonadorelin,Receptors, Luliberin,Follicle Stimulating Hormone-Releasing Hormone Receptors,GnRH Receptor,Gonadorelin Receptor,Gonadotropin-Releasing Hormone Receptor,LHRH Receptor,Luteinizing Hormone Releasing Hormone Receptors,Luteinizing Hormone Releasing-Hormone Receptor,Receptor, LHRH,Receptors, Gonadotropin Releasing-Hormone,Receptors, LHFSHRH,Follicle Stimulating Hormone Releasing Hormone Receptors,Gonadotropin Releasing Hormone Receptor,Gonadotropin Releasing Hormone Receptors,Hormone Receptor, Gonadotropin-Releasing,Luteinizing Hormone Releasing Hormone Receptor,Receptor, GnRH,Receptor, Gonadorelin,Receptor, Gonadotropin-Releasing Hormone,Receptors, Gonadotropin Releasing Hormone,Releasing-Hormone Receptors, Gonadotropin
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D005260 Female Females
D006054 Goldfish Common name for Carassius auratus, a type of carp (CARPS). Carassius auratus
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014018 Tissue Distribution Accumulation of a drug or chemical substance in various organs (including those not relevant to its pharmacologic or therapeutic action). This distribution depends on the blood flow or perfusion rate of the organ, the ability of the drug to penetrate organ membranes, tissue specificity, protein binding. The distribution is usually expressed as tissue to plasma ratios. Distribution, Tissue,Distributions, Tissue,Tissue Distributions

Related Publications

Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
January 1988, Peptides,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
August 1987, General and comparative endocrinology,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
December 1990, Biology of reproduction,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
March 1999, Proceedings of the National Academy of Sciences of the United States of America,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
January 1990, Progress in clinical and biological research,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
January 2001, Neuroscience,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
February 1993, The American journal of physiology,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
April 2004, Endocrine reviews,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
October 1999, Cellular and molecular neurobiology,
Richard E Peter, and P D Prasada Rao, and Santhosh M Baby, and Nicola Illing, and Robert P Millar
January 1997, Recent progress in hormone research,
Copied contents to your clipboard!