Myelin-deficient mutant mice. An in vivo model for inhibition of gene expression by natural antisense RNA. 1992

J M Matthieu, and M Tosic, and A Roach
Service de Pédiatrie, Centre hospitalier universitaire vaudois CH-1011 Lausanne, Switzerland.

UI MeSH Term Description Entries
D008817 Mice, Mutant Strains Mice bearing mutant genes which are phenotypically expressed in the animals. Mouse, Mutant Strain,Mutant Mouse Strain,Mutant Strain of Mouse,Mutant Strains of Mice,Mice Mutant Strain,Mice Mutant Strains,Mouse Mutant Strain,Mouse Mutant Strains,Mouse Strain, Mutant,Mouse Strains, Mutant,Mutant Mouse Strains,Mutant Strain Mouse,Mutant Strains Mice,Strain Mouse, Mutant,Strain, Mutant Mouse,Strains Mice, Mutant,Strains, Mutant Mouse
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012330 RNA, Double-Stranded RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded
D016372 RNA, Antisense RNA molecules which hybridize to complementary sequences in either RNA or DNA altering the function of the latter. Endogenous antisense RNAs function as regulators of gene expression by a variety of mechanisms. Synthetic antisense RNAs are used to effect the functioning of specific genes for investigative or therapeutic purposes. Antisense RNA,Anti-Sense RNA,Anti Sense RNA,RNA, Anti-Sense
D051379 Mice The common name for the genus Mus. Mice, House,Mus,Mus musculus,Mice, Laboratory,Mouse,Mouse, House,Mouse, Laboratory,Mouse, Swiss,Mus domesticus,Mus musculus domesticus,Swiss Mice,House Mice,House Mouse,Laboratory Mice,Laboratory Mouse,Mice, Swiss,Swiss Mouse,domesticus, Mus musculus

Related Publications

J M Matthieu, and M Tosic, and A Roach
February 1991, Journal of neurochemistry,
J M Matthieu, and M Tosic, and A Roach
September 1997, Neurochemistry international,
J M Matthieu, and M Tosic, and A Roach
May 1988, Plant molecular biology,
J M Matthieu, and M Tosic, and A Roach
August 1986, Proceedings of the National Academy of Sciences of the United States of America,
J M Matthieu, and M Tosic, and A Roach
October 1992, Annals of the New York Academy of Sciences,
J M Matthieu, and M Tosic, and A Roach
December 1986, The Journal of cell biology,
J M Matthieu, and M Tosic, and A Roach
February 1982, Science (New York, N.Y.),
Copied contents to your clipboard!