Increased exhaled 8-isoprostane in childhood asthma. 2003

Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
Department of Pediatrics (Drs. Baraldi, Ghiro, Piovan, and Carraro), School of Medicine, University of Padova, Padova, Italy.

OBJECTIVE To quantify lung oxidative stress in asthmatic children by measuring concentrations of 8-isoprostane, a marker of oxidative stress, in exhaled breath condensate (EBC), which is a noninvasive method of sampling airway secretions. Secondary objectives were as follows: (1) to measure levels of exhaled prostaglandin (PG) E(2), since impaired PGE(2) production has been implicated in the pathogenesis of asthma in adults; and (2) to measure levels of fractional exhaled nitric oxide (FeNO), which is a marker of airway inflammation. METHODS Single-center, cross-sectional study. METHODS Twelve healthy children, 12 steroid-naïve asthmatic children, and 30 children in stable condition with mild-to-moderate persistent asthma who were being treated with inhaled corticosteroids (ICSs) [average dose, 300 micro g per day] were studied. METHODS Subjects attended the outpatient clinic on one occasion for the collection of EBC and FeNO measurements. RESULTS 8-Isoprostane and PGE(2) concentrations in EBC were measured with specific radioimmunoassays. FeNO was measured online by a chemiluminescence analyzer. 8-Isoprostane was detectable in the EBC of healthy children (mean [+/- SEM], 34.2 +/- 4.5 pg/mL), and its concentrations were increased in both steroid-naïve asthmatic children (mean, 56.4 +/- 7.7 pg/mL; p < 0.01) and steroid-treated asthmatic children (mean, 47.2 +/- 2.3 pg/mL; p < 0.05). There was no difference in exhaled 8-isoprostane concentrations between the two groups of asthmatic children (p = 0.14). By contrast, exhaled PGE(2) concentrations were similar among the three study groups (p = 0.56). FeNO levels were higher in steroid-naïve children with asthma (49.2 +/- 9.6 parts per billion [ppb]; p < 0.05) and, to a lesser extent, in steroid-treated asthmatic children (37.8 +/- 6.6 ppb; p < 0.05) compared with healthy children (15.2 +/- 1.7 ppb). CONCLUSIONS Lung oxidative stress is increased in children who are in stable condition with asthma, as reflected by increased exhaled 8-isoprostane concentrations. This increase seems to be relatively resistant to treatment with ICSs. Decreased PGE(2) lung production is unlikely to play a pathophysiologic role in childhood asthma.

UI MeSH Term Description Entries
D008163 Luminescent Measurements Techniques used for determining the values of photometric parameters of light resulting from LUMINESCENCE. Bioluminescence Measurements,Bioluminescent Assays,Bioluminescent Measurements,Chemiluminescence Measurements,Chemiluminescent Assays,Chemiluminescent Measurements,Chemoluminescence Measurements,Luminescence Measurements,Luminescent Assays,Luminescent Techniques,Phosphorescence Measurements,Phosphorescent Assays,Phosphorescent Measurements,Assay, Bioluminescent,Assay, Chemiluminescent,Assay, Luminescent,Assay, Phosphorescent,Assays, Bioluminescent,Assays, Chemiluminescent,Assays, Luminescent,Assays, Phosphorescent,Bioluminescence Measurement,Bioluminescent Assay,Bioluminescent Measurement,Chemiluminescence Measurement,Chemiluminescent Assay,Chemiluminescent Measurement,Chemoluminescence Measurement,Luminescence Measurement,Luminescent Assay,Luminescent Measurement,Luminescent Technique,Measurement, Bioluminescence,Measurement, Bioluminescent,Measurement, Chemiluminescence,Measurement, Chemiluminescent,Measurement, Chemoluminescence,Measurement, Luminescence,Measurement, Luminescent,Measurement, Phosphorescence,Measurement, Phosphorescent,Measurements, Bioluminescence,Measurements, Bioluminescent,Measurements, Chemiluminescence,Measurements, Chemiluminescent,Measurements, Chemoluminescence,Measurements, Luminescence,Measurements, Luminescent,Measurements, Phosphorescence,Measurements, Phosphorescent,Phosphorescence Measurement,Phosphorescent Assay,Phosphorescent Measurement,Technique, Luminescent,Techniques, Luminescent
D008297 Male Males
D009569 Nitric Oxide A free radical gas produced endogenously by a variety of mammalian cells, synthesized from ARGININE by NITRIC OXIDE SYNTHASE. Nitric oxide is one of the ENDOTHELIUM-DEPENDENT RELAXING FACTORS released by the vascular endothelium and mediates VASODILATION. It also inhibits platelet aggregation, induces disaggregation of aggregated platelets, and inhibits platelet adhesion to the vascular endothelium. Nitric oxide activates cytosolic GUANYLATE CYCLASE and thus elevates intracellular levels of CYCLIC GMP. Endogenous Nitrate Vasodilator,Mononitrogen Monoxide,Nitric Oxide, Endothelium-Derived,Nitrogen Monoxide,Endothelium-Derived Nitric Oxide,Monoxide, Mononitrogen,Monoxide, Nitrogen,Nitrate Vasodilator, Endogenous,Nitric Oxide, Endothelium Derived,Oxide, Nitric,Vasodilator, Endogenous Nitrate
D011863 Radioimmunoassay Classic quantitative assay for detection of antigen-antibody reactions using a radioactively labeled substance (radioligand) either directly or indirectly to measure the binding of the unlabeled substance to a specific antibody or other receptor system. Non-immunogenic substances (e.g., haptens) can be measured if coupled to larger carrier proteins (e.g., bovine gamma-globulin or human serum albumin) capable of inducing antibody formation. Radioimmunoassays
D012129 Respiratory Function Tests Measurement of the various processes involved in the act of respiration: inspiration, expiration, oxygen and carbon dioxide exchange, lung volume and compliance, etc. Lung Function Tests,Pulmonary Function Tests,Function Test, Pulmonary,Function Tests, Pulmonary,Pulmonary Function Test,Test, Pulmonary Function,Tests, Pulmonary Function,Function Test, Lung,Function Test, Respiratory,Function Tests, Lung,Function Tests, Respiratory,Lung Function Test,Respiratory Function Test,Test, Lung Function,Test, Respiratory Function,Tests, Lung Function,Tests, Respiratory Function
D001944 Breath Tests Any tests done on exhaled air. Breathalyzer Tests,Breath Test,Breathalyzer Test,Test, Breath,Test, Breathalyzer,Tests, Breath,Tests, Breathalyzer
D002648 Child A person 6 to 12 years of age. An individual 2 to 5 years old is CHILD, PRESCHOOL. Children
D002675 Child, Preschool A child between the ages of 2 and 5. Children, Preschool,Preschool Child,Preschool Children
D003430 Cross-Sectional Studies Studies in which the presence or absence of disease or other health-related variables are determined in each member of the study population or in a representative sample at one particular time. This contrasts with LONGITUDINAL STUDIES which are followed over a period of time. Disease Frequency Surveys,Prevalence Studies,Analysis, Cross-Sectional,Cross Sectional Analysis,Cross-Sectional Survey,Surveys, Disease Frequency,Analyses, Cross Sectional,Analyses, Cross-Sectional,Analysis, Cross Sectional,Cross Sectional Analyses,Cross Sectional Studies,Cross Sectional Survey,Cross-Sectional Analyses,Cross-Sectional Analysis,Cross-Sectional Study,Cross-Sectional Surveys,Disease Frequency Survey,Prevalence Study,Studies, Cross-Sectional,Studies, Prevalence,Study, Cross-Sectional,Study, Prevalence,Survey, Cross-Sectional,Survey, Disease Frequency,Surveys, Cross-Sectional
D005260 Female Females

Related Publications

Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
July 2005, Respiratory research,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
August 2002, American journal of respiratory and critical care medicine,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
July 1999, American journal of respiratory and critical care medicine,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
July 2012, Archives of medical science : AMS,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
August 2016, European journal of sport science,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
October 2016, Helicobacter,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
February 2017, Journal of breath research,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
January 2010, Methods in molecular biology (Clifton, N.J.),
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
April 2018, The European respiratory journal,
Eugenio Baraldi, and Laura Ghiro, and Vania Piovan, and Silvia Carraro, and Giovanni Ciabattoni, and Peter J Barnes, and Paolo Montuschi
December 2010, Rheumatology (Oxford, England),
Copied contents to your clipboard!