Cloning and characterization of the Drosophila U7 small nuclear RNA. 2003

Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
Department of Biochemistry and Biophysics and Program in Molecular Biology and Biotechnology, University of North Carolina, Chapel Hill, NC 27599, USA. dominski@med.unc.edu

Base pairing between the 5' end of U7 small nuclear RNA (snRNA) and the histone downstream element (HDE) in replication-dependent histone pre-mRNAs is the key event in 3'-end processing that leads to generation of mature histone mRNAs. We have cloned the Drosophila U7 snRNA and demonstrated that it is required for histone pre-mRNA 3'-end processing in a Drosophila nuclear extract. The 71-nt Drosophila U7 snRNA is encoded by a single gene that is embedded in the direct orientation in an intron of the Eip63E gene. The U7 snRNA gene contains conserved promoter elements typical of other Drosophila snRNA genes, and the coding sequence is followed by a 3' box indicating that the Drosophila U7 snRNA gene is an independent transcription unit. Drosophila U7 snRNA contains a trimethyl-guanosine cap at the 5' end and a putative Sm-binding site similar to the unique Sm-binding site found in other U7 snRNAs. Drosophila U7 snRNA is approximately 10 nt longer than mammalian U7 snRNAs because of an extended 5' sequence and has only a limited potential to form a stem-loop structure near the 3' end. The extended 5' end of Drosophila U7 snRNA can base pair with the HDE in all five Drosophila histone pre-mRNAs. Blocking the 5' end of the U7 snRNA with a complementary oligonucleotide specifically blocks processing of a Drosophila histone pre-mRNA. Changes in the HDE that abolish or decrease processing efficiency result in a reduced ability to recruit U7 snRNA to the pre-mRNA.

UI MeSH Term Description Entries
D007438 Introns Sequences of DNA in the genes that are located between the EXONS. They are transcribed along with the exons but are removed from the primary gene transcript by RNA SPLICING to leave mature RNA. Some introns code for separate genes. Intervening Sequences,Sequences, Intervening,Intervening Sequence,Intron,Sequence, Intervening
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011233 Precipitin Tests Serologic tests in which a positive reaction manifested by visible CHEMICAL PRECIPITATION occurs when a soluble ANTIGEN reacts with its precipitins, i.e., ANTIBODIES that can form a precipitate. Precipitin Test,Test, Precipitin,Tests, Precipitin
D011401 Promoter Regions, Genetic DNA sequences which are recognized (directly or indirectly) and bound by a DNA-dependent RNA polymerase during the initiation of transcription. Highly conserved sequences within the promoter include the Pribnow box in bacteria and the TATA BOX in eukaryotes. rRNA Promoter,Early Promoters, Genetic,Late Promoters, Genetic,Middle Promoters, Genetic,Promoter Regions,Promoter, Genetic,Promotor Regions,Promotor, Genetic,Pseudopromoter, Genetic,Early Promoter, Genetic,Genetic Late Promoter,Genetic Middle Promoters,Genetic Promoter,Genetic Promoter Region,Genetic Promoter Regions,Genetic Promoters,Genetic Promotor,Genetic Promotors,Genetic Pseudopromoter,Genetic Pseudopromoters,Late Promoter, Genetic,Middle Promoter, Genetic,Promoter Region,Promoter Region, Genetic,Promoter, Genetic Early,Promoter, rRNA,Promoters, Genetic,Promoters, Genetic Middle,Promoters, rRNA,Promotor Region,Promotors, Genetic,Pseudopromoters, Genetic,Region, Genetic Promoter,Region, Promoter,Region, Promotor,Regions, Genetic Promoter,Regions, Promoter,Regions, Promotor,rRNA Promoters
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D003001 Cloning, Molecular The insertion of recombinant DNA molecules from prokaryotic and/or eukaryotic sources into a replicating vehicle, such as a plasmid or virus vector, and the introduction of the resultant hybrid molecules into recipient cells without altering the viability of those cells. Molecular Cloning
D004330 Drosophila A genus of small, two-winged flies containing approximately 900 described species. These organisms are the most extensively studied of all genera from the standpoint of genetics and cytology. Fruit Fly, Drosophila,Drosophila Fruit Flies,Drosophila Fruit Fly,Drosophilas,Flies, Drosophila Fruit,Fly, Drosophila Fruit,Fruit Flies, Drosophila
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA

Related Publications

Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
August 1992, Biochemical Society transactions,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
March 1988, Molecular and cellular biology,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
December 2003, RNA (New York, N.Y.),
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
November 1990, Gene,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
January 1994, Microbios,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
December 1984, The EMBO journal,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
July 1992, Gene,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
July 1993, Proceedings of the National Academy of Sciences of the United States of America,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
February 1992, Biochemical Society transactions,
Zbigniew Dominski, and Xiao-Cui Yang, and Matthew Purdy, and William F Marzluff
September 1983, Journal of molecular biology,
Copied contents to your clipboard!