[Factors influencing nerve regeneration]. 2003

H Fansa, and G Keilhoff
Klinik für Plastische, Wiederherstellungs- und Handchirurgie, Medizinische Fakultät der Otto-von-Guericke-Universität, Magdeburg. h@fansa.de

This paper describes the most important cellular and molecular factors that influence nerve regeneration. The first prerequisite for axonal regeneration is survival of the neuron. This depends on neuron type, age, and the degree and proximity of the injury to the cell body. Spinal motoneurons are less susceptible to injury-induced death than cranial motoneurons and sensory neurons. The surviving neurons undergo changes characteristic of a switch from a transmitting mode to a growing mode. They produce various neurotrophic factors and their receptors influencing the neuron and the non-neuronal cells such as Schwann cells. The distal nerve stump undergoes degenerative processes including removal of axons and phagocytosis of myelin debris, the so-called Wallerian degeneration. Until the second day phagocytosis is done by Schwann cells, hematogenous macrophages invade the distal stump at the second day and phagocyte the whole debris within two weeks. Devoid of axonal contact, the myelinating Schwann cells switch their function from myelination to growth support for the regenerating axons, including cell proliferation, downregulation of myelin components and upregulation of neurotrophic factors. Additionally, the Schwann cells form the so-called Bands of Büngner, cell columns serving as pathway for the growing axon. Trophic factors, cell adhesion molecules and extracellular matrix influence the neuron, the growing axon and the endorgan as well as the non-neuronal cells such as Schwann cells, fibroblasts and macrophages. Application of drugs or trophic substances to enhance nerve regeneration after trauma and reconstruction is in the very beginning, and thus requires further experimental and clinical studies. Experimentally, FK 506 was found to support axonal regeneration after crush lesions and nerve grafting. Growth factors are currently administered clinically in other neurological diseases.

UI MeSH Term Description Entries
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D009410 Nerve Degeneration Loss of functional activity and trophic degeneration of nerve axons and their terminal arborizations following the destruction of their cells of origin or interruption of their continuity with these cells. The pathology is characteristic of neurodegenerative diseases. Often the process of nerve degeneration is studied in research on neuroanatomical localization and correlation of the neurophysiology of neural pathways. Neuron Degeneration,Degeneration, Nerve,Degeneration, Neuron,Degenerations, Nerve,Degenerations, Neuron,Nerve Degenerations,Neuron Degenerations
D009414 Nerve Growth Factors Factors which enhance the growth potentialities of sensory and sympathetic nerve cells. Neurite Outgrowth Factor,Neurite Outgrowth Factors,Neuronal Growth-Associated Protein,Neuronotrophic Factor,Neurotrophic Factor,Neurotrophic Factors,Neurotrophin,Neurotrophins,Growth-Associated Proteins, Neuronal,Neuronal Growth-Associated Proteins,Neuronotrophic Factors,Neurotrophic Protein,Neurotrophic Proteins,Proteins, Neuronal Growth-Associated,Factor, Neurite Outgrowth,Factor, Neuronotrophic,Factor, Neurotrophic,Factors, Nerve Growth,Factors, Neurite Outgrowth,Factors, Neuronotrophic,Factors, Neurotrophic,Growth Associated Proteins, Neuronal,Growth-Associated Protein, Neuronal,Neuronal Growth Associated Protein,Neuronal Growth Associated Proteins,Outgrowth Factor, Neurite,Outgrowth Factors, Neurite,Protein, Neuronal Growth-Associated
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D001917 Brachial Plexus The large network of nerve fibers which distributes the innervation of the upper extremity. The brachial plexus extends from the neck into the axilla. In humans, the nerves of the plexus usually originate from the lower cervical and the first thoracic spinal cord segments (C5-C8 and T1), but variations are not uncommon. Plexus, Brachial
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015815 Cell Adhesion Molecules Surface ligands, usually glycoproteins, that mediate cell-to-cell adhesion. Their functions include the assembly and interconnection of various vertebrate systems, as well as maintenance of tissue integration, wound healing, morphogenic movements, cellular migrations, and metastasis. Cell Adhesion Molecule,Intercellular Adhesion Molecule,Intercellular Adhesion Molecules,Leukocyte Adhesion Molecule,Leukocyte Adhesion Molecules,Saccharide-Mediated Cell Adhesion Molecules,Saccharide Mediated Cell Adhesion Molecules,Adhesion Molecule, Cell,Adhesion Molecule, Intercellular,Adhesion Molecule, Leukocyte,Adhesion Molecules, Cell,Adhesion Molecules, Intercellular,Adhesion Molecules, Leukocyte,Molecule, Cell Adhesion,Molecule, Intercellular Adhesion,Molecule, Leukocyte Adhesion,Molecules, Cell Adhesion,Molecules, Intercellular Adhesion,Molecules, Leukocyte Adhesion

Related Publications

H Fansa, and G Keilhoff
October 1982, Journal of periodontology,
H Fansa, and G Keilhoff
December 1953, The Journal of comparative neurology,
H Fansa, and G Keilhoff
May 1992, Journal (Canadian Dental Association),
H Fansa, and G Keilhoff
April 2004, Sheng li ke xue jin zhan [Progress in physiology],
H Fansa, and G Keilhoff
January 2001, Progress in brain research,
H Fansa, and G Keilhoff
March 1952, Brain : a journal of neurology,
H Fansa, and G Keilhoff
January 1983, Archives of orthopaedic and traumatic surgery. Archiv fur orthopadische und Unfall-Chirurgie,
H Fansa, and G Keilhoff
November 2005, Investigative ophthalmology & visual science,
H Fansa, and G Keilhoff
October 1956, A.M.A. archives of internal medicine,
Copied contents to your clipboard!