Mapping Hsp47 binding site(s) using CNBr peptides derived from type I and type II collagen. 2003

Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
Department of Biochemistry, McMaster University, 1200 Main Street, Hamilton, Ontario, Canada L8N 3Z5.

As a crucial molecular chaperone in collagen biosynthesis, Hsp47 interacts with the nascent form as well as the mature triple-helical form of procollagen. The location(s) of Hsp47 binding sites on the collagen molecule are, as yet, unknown. We have examined the substrate specificity of Hsp47 in vitro using well-characterized CNBr peptide fragments of type I and type II collagen along with radiolabeled, recombinant Hsp47. Interaction of these peptides with Hsp47 bound to collagen-coated microtiter wells showed several binding sites for Hsp47 along the length of the alpha1 and alpha2 chains of type I collagen and the alpha1 chain of type II collagen, with the N-terminal regions showing the strongest affinities. The latter observation was also supported by the results of a ligand-blot assay. Except for two peptides in the alpha2(I) chain, peptides that showed substantial binding to Hsp47 did so in their triple-helical and not random-coil form. Unlike earlier studies that used peptide models for collagen, the results obtained here on fragments of type I and type II collagen identify, for the first time, binding of Hsp47 to specific regions of the collagen molecule. They also point to additional structural requirements for Hsp47 binding besides the known preference for third-position Arg residues and the triple-helical conformation.

UI MeSH Term Description Entries
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010449 Peptide Mapping Analysis of PEPTIDES that are generated from the digestion or fragmentation of a protein or mixture of PROTEINS, by ELECTROPHORESIS; CHROMATOGRAPHY; or MASS SPECTROMETRY. The resulting peptide fingerprints are analyzed for a variety of purposes including the identification of the proteins in a sample, GENETIC POLYMORPHISMS, patterns of gene expression, and patterns diagnostic for diseases. Fingerprints, Peptide,Peptide Fingerprinting,Protein Fingerprinting,Fingerprints, Protein,Fingerprint, Peptide,Fingerprint, Protein,Fingerprinting, Peptide,Fingerprinting, Protein,Mapping, Peptide,Peptide Fingerprint,Peptide Fingerprints,Protein Fingerprint,Protein Fingerprints
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D002942 Circular Dichroism A change from planar to elliptic polarization when an initially plane-polarized light wave traverses an optically active medium. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Circular Dichroism, Vibrational,Dichroism, Circular,Vibrational Circular Dichroism
D003488 Cyanogen Bromide Cyanogen bromide (CNBr). A compound used in molecular biology to digest some proteins and as a coupling reagent for phosphoroamidate or pyrophosphate internucleotide bonds in DNA duplexes. Bromide, Cyanogen
D006360 Heat-Shock Proteins Proteins which are synthesized in eukaryotic organisms and bacteria in response to hyperthermia and other environmental stresses. They increase thermal tolerance and perform functions essential to cell survival under these conditions. Stress Protein,Stress Proteins,Heat-Shock Protein,Heat Shock Protein,Heat Shock Proteins,Protein, Stress
D001667 Binding, Competitive The interaction of two or more substrates or ligands with the same binding site. The displacement of one by the other is used in quantitative and selective affinity measurements. Competitive Binding
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013460 Sulfur Isotopes Stable sulfur atoms that have the same atomic number as the element sulfur, but differ in atomic weight. S-33, 34, and 36 are stable sulfur isotopes. Isotopes, Sulfur

Related Publications

Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
January 1975, Connective tissue research,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
May 1996, Biochemistry,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
April 2003, Biochimica et biophysica acta,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
May 1996, Journal of chromatography. B, Biomedical applications,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
March 2002, European journal of biochemistry,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
November 2002, The Journal of biological chemistry,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
June 1997, Journal of molecular biology,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
September 1981, Collagen and related research,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
July 2021, Biomolecules,
Christy A Thomson, and Ruggero Tenni, and Vettai S Ananthanarayanan
January 1997, Mechanisms of development,
Copied contents to your clipboard!