PAF-acether induced arterial thrombosis and the effect of specific antagonists. 1992

R H Bourgain, and R Andries, and A Esanu, and P Braquet
Laboratory of Physiology and Physiopathology, University of Brussels, VUB, Belgium.

Platelet-vessel wall interactions and local thrombosis are investigated in vivo in a branch of the mesenteric artery of the guinea pig, using optoelectronic registration and ultrastructural control. Following an electrical challenge resulting in changes of cell membrane polarization, subsequent superfusion by PAF-acether or a stable analogue, (1-O-alkyl-2-N-methylcarbamyl-sn-glycero-3-phosphocholine, 10(-8) M focal concentration (f.c.)) for a restricted period results in endothelial cell retraction and bleb formation followed by platelet adhesion and the development of a thrombus which over time becomes invaded by leukocytes and eventually occludes the vascular lumen. It was demonstrated in a previous investigation that these phenomena are triggered by the generation of endogenous PAF-acether by the endothelial cells. Specific PAF-acether-antagonists, such as BN 52021 a ginkgolide, but also synthetic molecules, derivatives of the triazolo-pyridino-diazepine group (BN 50727, BN 50755 and BN 50789), significantly inhibit platelet-vessel wall interactions and thrombosis, but not the formation of blebs in the endothelial cells. Hydrogen peroxide (10(-5)M f.c.) not only primes the effect of PAF-acether, but is by itself capable of inducing thrombosis through a PAF-acether-mediated mechanism. Inhibition of acetyl hydrolase by PMSF (phenyl-methyl-sulfonyl-fluoride, 10(-5)M f.c.) invariably results in a significant enhancement of thrombosis, while conversely, inhibition of acetyl transferase by 27584 RP (4-(naphtylvinyl)pyridine hydrochloride, 10(-6)M f.c.) inhibits thromboformation indicating that the remodeling pathway is involved.

UI MeSH Term Description Entries
D008638 Mesenteric Arteries Arteries which arise from the abdominal aorta and distribute to most of the intestines. Arteries, Mesenteric,Artery, Mesenteric,Mesenteric Artery
D010664 Phenylmethylsulfonyl Fluoride An enzyme inhibitor that inactivates IRC-50 arvin, subtilisin, and the fatty acid synthetase complex. Benzenemethanesulfonyl Fluoride,Phenylmethanesulfonyl Fluoride,Fluoride, Benzenemethanesulfonyl,Fluoride, Phenylmethanesulfonyl,Fluoride, Phenylmethylsulfonyl
D010972 Platelet Activating Factor A phospholipid derivative formed by PLATELETS; BASOPHILS; NEUTROPHILS; MONOCYTES; and MACROPHAGES. It is a potent platelet aggregating agent and inducer of systemic anaphylactic symptoms, including HYPOTENSION; THROMBOCYTOPENIA; NEUTROPENIA; and BRONCHOCONSTRICTION. AGEPC,Acetyl Glyceryl Ether Phosphorylcholine,PAF-Acether,Phosphorylcholine, Acetyl Glyceryl Ether,1-Alkyl-2-acetyl-sn-glycerophosphocholine,Platelet Aggregating Factor,Platelet Aggregation Enhancing Factor,Platelet-Activating Substance,Thrombocyte Aggregating Activity,1 Alkyl 2 acetyl sn glycerophosphocholine,Aggregating Factor, Platelet,Factor, Platelet Activating,PAF Acether,Platelet Activating Substance
D001792 Blood Platelets Non-nucleated disk-shaped cells formed in the megakaryocyte and found in the blood of all mammals. They are mainly involved in blood coagulation. Platelets,Thrombocytes,Blood Platelet,Platelet,Platelet, Blood,Platelets, Blood,Thrombocyte
D006168 Guinea Pigs A common name used for the genus Cavia. The most common species is Cavia porcellus which is the domesticated guinea pig used for pets and biomedical research. Cavia,Cavia porcellus,Guinea Pig,Pig, Guinea,Pigs, Guinea
D006861 Hydrogen Peroxide A strong oxidizing agent used in aqueous solution as a ripening agent, bleach, and topical anti-infective. It is relatively unstable and solutions deteriorate over time unless stabilized by the addition of acetanilide or similar organic materials. Hydrogen Peroxide (H2O2),Hydroperoxide,Oxydol,Perhydrol,Superoxol,Peroxide, Hydrogen
D006867 Hydrolases Any member of the class of enzymes that catalyze the cleavage of the substrate and the addition of water to the resulting molecules, e.g., ESTERASES, glycosidases (GLYCOSIDE HYDROLASES), lipases, NUCLEOTIDASES, peptidases (PEPTIDE HYDROLASES), and phosphatases (PHOSPHORIC MONOESTER HYDROLASES). EC 3. Hydrolase
D000123 Acetyltransferases Enzymes catalyzing the transfer of an acetyl group, usually from acetyl coenzyme A, to another compound. EC 2.3.1. Acetyltransferase
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001381 Azepines Seven membered heterocyclic rings containing a NITROGEN atom. Hexamethyleneimines

Related Publications

R H Bourgain, and R Andries, and A Esanu, and P Braquet
January 1987, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
December 1990, Journal of medicinal chemistry,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
December 1991, Lipids,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
April 1986, European journal of pharmacology,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
January 1988, Journal of immunology (Baltimore, Md. : 1950),
R H Bourgain, and R Andries, and A Esanu, and P Braquet
July 1986, Prostaglandins,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
October 1988, The Journal of pharmacology and experimental therapeutics,
R H Bourgain, and R Andries, and A Esanu, and P Braquet
January 1986, Thrombosis research,
Copied contents to your clipboard!