Influence of stimulus intensity on waveform of sympathetic skin response evoked by magnetic stimulation. 2003

Minoru Toyokura
Department of Rehabilitation Medicine, Tokai University Oiso Hospital, 21-1 Gakkyo Oisomachi, Nakagun, Kanagawa 259-0198, Japan. toyokura@juno.dti.ne.jp

OBJECTIVE The aim of this study was to investigate the influence of stimulus intensity on the waveform of sympathetic skin response (SSR). The origin of the SSR waveform was discussed. METHODS A total of 12 SSRs from palm skin were analyzed in 40 normal subjects. SSR was evoked by magnetic stimulation to the neck at 3 different intensities (10, 35, and 70% of the maximum output). The 3 stimuli were repeatedly applied in 4 separate sets. Waveforms were classified as either the P type, in which the positive component was larger than the negative one, or the N type, in which the negative component was larger than the positive one. Amplitude values of peak-to-peak, the first negative (N1), and subsequent positive (P1) components were compared among the 12 responses. RESULTS When the stimulation was increased, the SSR size became larger. The P type SSR was most frequently found in the maximum stimulation. Strong stimulation generally produced a large P1. Only the N type SSR exhibited a large N1 response to the maximum stimulation. There was a significant, negative correlation between N1 peak duration (difference between the SSR onset and N1 peak latencies) and P1 amplitude. CONCLUSIONS These results suggested that strong responses probably produced a P type SSR with a large P1 component. In this condition, a rapid change of potential from negative to positive prevented any correlation between N1 amplitude and the magnitude of the response. In the N type SSR, however, a large N1 was associated with a strong response. These findings can be explained by a newly presented theory on the neurophysiological origin of the negative and positive components, based on a model of equivalent current dipole dependent on the Na+ concentration gradient. CONCLUSIONS The present study provided some suggestions on the neurophysiological mechanism of SSR waveform.

UI MeSH Term Description Entries
D008280 Magnetics The study of MAGNETIC PHENOMENA. Magnetic
D008297 Male Males
D009333 Neck The part of a human or animal body connecting the HEAD to the rest of the body. Necks
D009431 Neural Conduction The propagation of the NERVE IMPULSE along the nerve away from the site of an excitation stimulus. Nerve Conduction,Conduction, Nerve,Conduction, Neural,Conductions, Nerve,Conductions, Neural,Nerve Conductions,Neural Conductions
D011930 Reaction Time The time from the onset of a stimulus until a response is observed. Response Latency,Response Speed,Response Time,Latency, Response,Reaction Times,Response Latencies,Response Times,Speed, Response,Speeds, Response
D004307 Dose-Response Relationship, Radiation The relationship between the dose of administered radiation and the response of the organism or tissue to the radiation. Dose Response Relationship, Radiation,Dose-Response Relationships, Radiation,Radiation Dose-Response Relationship,Radiation Dose-Response Relationships,Relationship, Radiation Dose-Response,Relationships, Radiation Dose-Response
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D005071 Evoked Potentials Electrical responses recorded from nerve, muscle, SENSORY RECEPTOR, or area of the CENTRAL NERVOUS SYSTEM following stimulation. They range from less than a microvolt to several microvolts. The evoked potential can be auditory (EVOKED POTENTIALS, AUDITORY), somatosensory (EVOKED POTENTIALS, SOMATOSENSORY), visual (EVOKED POTENTIALS, VISUAL), or motor (EVOKED POTENTIALS, MOTOR), or other modalities that have been reported. Event Related Potential,Event-Related Potentials,Evoked Potential,N100 Evoked Potential,P50 Evoked Potential,N1 Wave,N100 Evoked Potentials,N2 Wave,N200 Evoked Potentials,N3 Wave,N300 Evoked Potentials,N4 Wave,N400 Evoked Potentials,P2 Wave,P200 Evoked Potentials,P50 Evoked Potentials,P50 Wave,P600 Evoked Potentials,Potentials, Event-Related,Event Related Potentials,Event-Related Potential,Evoked Potential, N100,Evoked Potential, N200,Evoked Potential, N300,Evoked Potential, N400,Evoked Potential, P200,Evoked Potential, P50,Evoked Potential, P600,Evoked Potentials, N100,Evoked Potentials, N200,Evoked Potentials, N300,Evoked Potentials, N400,Evoked Potentials, P200,Evoked Potentials, P50,Evoked Potentials, P600,N1 Waves,N2 Waves,N200 Evoked Potential,N3 Waves,N300 Evoked Potential,N4 Waves,N400 Evoked Potential,P2 Waves,P200 Evoked Potential,P50 Waves,P600 Evoked Potential,Potential, Event Related,Potential, Event-Related,Potential, Evoked,Potentials, Event Related,Potentials, Evoked,Potentials, N400 Evoked,Related Potential, Event,Related Potentials, Event,Wave, N1,Wave, N2,Wave, N3,Wave, N4,Wave, P2,Wave, P50,Waves, N1,Waves, N2,Waves, N3,Waves, N4,Waves, P2,Waves, P50
D005260 Female Females
D006185 Habituation, Psychophysiologic The disappearance of responsiveness to a repeated stimulation. It does not include drug habituation. Habituation (Psychophysiology),Habituation, Psychophysiological,Psychophysiologic Habituation,Psychophysiological Habituation,Habituations (Psychophysiology)

Related Publications

Minoru Toyokura
January 2002, Functional neurology,
Minoru Toyokura
February 1995, Journal of the neurological sciences,
Minoru Toyokura
August 1982, Electroencephalography and clinical neurophysiology,
Minoru Toyokura
May 2001, Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology,
Minoru Toyokura
January 1991, Electroencephalography and clinical neurophysiology,
Copied contents to your clipboard!