Differentiation of normal human mammary epithelial cells in culture: an ultrastructural study. 1976

J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich

An ultrastructural and cytochemical study of normal human mammary epithelial cells cultured from post-weaning breast fluids is described. Cells were examined at the time of plating and at intervals up to 28 days in culture. Three different stages in the morphological differentiation of these cells in vitro were observed: (1) the first stage was the formation of a monolayer of single cells, which occurred between days 1 and 10 in culture. The cells in this stage were not interconnected by junctional complexes and lacked Mg++- dependent ATPase activity in the plasma membranes, but did contain a large quantity of lipid and exhibited some secretory characteristics. (2) The second stage, occurring at 10 to 16 days in culture, was characterized by the formation of junctional complexes, the appearance of Mg++-dependent ATPase in the plasma membrane and a decrease in the number of dense bodies with peroxidase activity. (3) The third stage, occurring at 16 to 28 days in culture, was characterized by the formation of stratified layers of epithelial cells, which were interconnected by a larger number of desmosomes with numerous pleomorphic microfilaments. The Mg++-dependent ATPase activity in the plasma membrane was retained and the dense bodies with peroxidase activity were rarely observed at this stage. During the last seven days were prominent in the cells of the stratified layer. After 28 days in the culture, the cells began to round up and slough off the culture plate.

UI MeSH Term Description Entries
D007365 Intercellular Junctions Direct contact of a cell with a neighboring cell. Most such junctions are too small to be resolved by light microscopy, but they can be visualized by conventional or freeze-fracture electron microscopy, both of which show that the interacting CELL MEMBRANE and often the underlying CYTOPLASM and the intervening EXTRACELLULAR SPACE are highly specialized in these regions. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p792) Cell Junctions,Cell Junction,Intercellular Junction,Junction, Cell,Junction, Intercellular,Junctions, Cell,Junctions, Intercellular
D001940 Breast In humans, one of the paired regions in the anterior portion of the THORAX. The breasts consist of the MAMMARY GLANDS, the SKIN, the MUSCLES, the ADIPOSE TISSUE, and the CONNECTIVE TISSUES. Breasts
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003896 Desmosomes A type of junction that attaches one cell to its neighbor. One of a number of differentiated regions which occur, for example, where the cytoplasmic membranes of adjacent epithelial cells are closely apposed. It consists of a circular region of each membrane together with associated intracellular microfilaments and an intercellular material which may include, for example, mucopolysaccharides. (From Glick, Glossary of Biochemistry and Molecular Biology, 1990; Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Desmosome
D004847 Epithelial Cells Cells that line the inner and outer surfaces of the body by forming cellular layers (EPITHELIUM) or masses. Epithelial cells lining the SKIN; the MOUTH; the NOSE; and the ANAL CANAL derive from ectoderm; those lining the RESPIRATORY SYSTEM and the DIGESTIVE SYSTEM derive from endoderm; others (CARDIOVASCULAR SYSTEM and LYMPHATIC SYSTEM) derive from mesoderm. Epithelial cells can be classified mainly by cell shape and function into squamous, glandular and transitional epithelial cells. Adenomatous Epithelial Cells,Columnar Glandular Epithelial Cells,Cuboidal Glandular Epithelial Cells,Glandular Epithelial Cells,Squamous Cells,Squamous Epithelial Cells,Transitional Epithelial Cells,Adenomatous Epithelial Cell,Cell, Adenomatous Epithelial,Cell, Epithelial,Cell, Glandular Epithelial,Cell, Squamous,Cell, Squamous Epithelial,Cell, Transitional Epithelial,Cells, Adenomatous Epithelial,Cells, Epithelial,Cells, Glandular Epithelial,Cells, Squamous,Cells, Squamous Epithelial,Cells, Transitional Epithelial,Epithelial Cell,Epithelial Cell, Adenomatous,Epithelial Cell, Glandular,Epithelial Cell, Squamous,Epithelial Cell, Transitional,Epithelial Cells, Adenomatous,Epithelial Cells, Glandular,Epithelial Cells, Squamous,Epithelial Cells, Transitional,Glandular Epithelial Cell,Squamous Cell,Squamous Epithelial Cell,Transitional Epithelial Cell
D004848 Epithelium The layers of EPITHELIAL CELLS which cover the inner and outer surfaces of the cutaneous, mucus, and serous tissues and glands of the body. Mesothelium,Epithelial Tissue,Mesothelial Tissue,Epithelial Tissues,Mesothelial Tissues,Tissue, Epithelial,Tissue, Mesothelial,Tissues, Epithelial,Tissues, Mesothelial
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000251 Adenosine Triphosphatases A group of enzymes which catalyze the hydrolysis of ATP. The hydrolysis reaction is usually coupled with another function such as transporting Ca(2+) across a membrane. These enzymes may be dependent on Ca(2+), Mg(2+), anions, H+, or DNA. ATPases,Adenosinetriphosphatase,ATPase,ATPase, DNA-Dependent,Adenosine Triphosphatase,DNA-Dependent ATPase,DNA-Dependent Adenosinetriphosphatases,ATPase, DNA Dependent,Adenosinetriphosphatases, DNA-Dependent,DNA Dependent ATPase,DNA Dependent Adenosinetriphosphatases,Triphosphatase, Adenosine

Related Publications

J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
January 1979, Tissue & cell,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
January 1988, Cancer treatment and research,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
January 1994, Cancer treatment and research,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
July 1979, Journal of the National Cancer Institute,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
January 1979, Differentiation; research in biological diversity,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
April 1988, Biochemistry and cell biology = Biochimie et biologie cellulaire,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
May 1980, In vitro,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
January 1993, Cancer surveys,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
October 1982, Cell biology international reports,
J Russo, and P Furmanski, and R Bradley, and P Wells, and M A Rich
December 1977, International journal of cancer,
Copied contents to your clipboard!