Subpial demyelination in the cerebral cortex of multiple sclerosis patients. 2003

Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
Department of Neurology, Haukeland Hospital, Bergen, Norway. l.boe@vumc.nl

The extent and pattern of demyelination in the cerebral cortex was determined in 78 tissue blocks from the brains of 20 multiple sclerosis (MS) patients and 28 tissue blocks from 7 patients without neurological disease. Tissue blocks from 4 predetermined areas (cingulate gyrus, frontal, parietal, and temporal lobe) were studied, irrespective of macroscopically evident MS plaques. All tissue blocks contained cerebral cortex and periventricular and/or subcortical white matter. One hundred and nine demyelinating lesions were detected in the cerebral cortex, of which 92 (84.4%) were purely intracortical and 17 (15.6%) were lesions extending through both white and gray matter areas. In 5 of the 20 MS brains, subpial demyelination was extensive in the 4 widely spaced cortical areas studied, thus considered to represent a general cortical subpial demyelination. The percentage of demyelinated area was significantly higher in the cerebral cortex (mean 26.5%, median 14.1%) than in white matter (mean 6.5%, median 0%) (p = 0.001). Both gray and white matter demyelination was more prominent in the cingulate gyrus than in the other areas examined (p < 0.05). These results indicate that the cerebral cortex is likely to be a predilection site for MS lesions and identify general cortical subpial demyelination as a distinct pattern occurring in a significant subpopulation of MS patients.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D009103 Multiple Sclerosis An autoimmune disorder mainly affecting young adults and characterized by destruction of myelin in the central nervous system. Pathologic findings include multiple sharply demarcated areas of demyelination throughout the white matter of the central nervous system. Clinical manifestations include visual loss, extra-ocular movement disorders, paresthesias, loss of sensation, weakness, dysarthria, spasticity, ataxia, and bladder dysfunction. The usual pattern is one of recurrent attacks followed by partial recovery (see MULTIPLE SCLEROSIS, RELAPSING-REMITTING), but acute fulminating and chronic progressive forms (see MULTIPLE SCLEROSIS, CHRONIC PROGRESSIVE) also occur. (Adams et al., Principles of Neurology, 6th ed, p903) MS (Multiple Sclerosis),Multiple Sclerosis, Acute Fulminating,Sclerosis, Disseminated,Disseminated Sclerosis,Sclerosis, Multiple
D009413 Nerve Fibers, Myelinated A class of nerve fibers as defined by their structure, specifically the nerve sheath arrangement. The AXONS of the myelinated nerve fibers are completely encased in a MYELIN SHEATH. They are fibers of relatively large and varied diameters. Their NEURAL CONDUCTION rates are faster than those of the unmyelinated nerve fibers (NERVE FIBERS, UNMYELINATED). Myelinated nerve fibers are present in somatic and autonomic nerves. A Fibers,B Fibers,Fiber, Myelinated Nerve,Fibers, Myelinated Nerve,Myelinated Nerve Fiber,Myelinated Nerve Fibers,Nerve Fiber, Myelinated
D010296 Parietal Lobe Upper central part of the cerebral hemisphere. It is located posterior to central sulcus, anterior to the OCCIPITAL LOBE, and superior to the TEMPORAL LOBES. Brodmann Area 39,Brodmann Area 40,Brodmann Area 5,Brodmann Area 7,Brodmann's Area 39,Brodmann's Area 40,Brodmann's Area 5,Brodmann's Area 7,Inferior Parietal Cortex,Secondary Sensorimotor Cortex,Superior Parietal Lobule,Angular Gyrus,Gyrus Angularis,Gyrus Supramarginalis,Intraparietal Sulcus,Marginal Sulcus,Parietal Cortex,Parietal Lobule,Parietal Region,Posterior Paracentral Lobule,Posterior Parietal Cortex,Praecuneus,Precuneus,Precuneus Cortex,Prelunate Gyrus,Supramarginal Gyrus,Area 39, Brodmann,Area 39, Brodmann's,Area 40, Brodmann,Area 40, Brodmann's,Area 5, Brodmann,Area 5, Brodmann's,Area 7, Brodmann,Area 7, Brodmann's,Brodmanns Area 39,Brodmanns Area 40,Brodmanns Area 5,Brodmanns Area 7,Cortex, Inferior Parietal,Cortex, Parietal,Cortex, Posterior Parietal,Cortex, Precuneus,Cortex, Secondary Sensorimotor,Cortices, Inferior Parietal,Gyrus, Angular,Gyrus, Prelunate,Gyrus, Supramarginal,Inferior Parietal Cortices,Lobe, Parietal,Lobule, Parietal,Lobule, Posterior Paracentral,Lobule, Superior Parietal,Paracentral Lobule, Posterior,Paracentral Lobules, Posterior,Parietal Cortex, Inferior,Parietal Cortex, Posterior,Parietal Cortices,Parietal Cortices, Inferior,Parietal Cortices, Posterior,Parietal Lobes,Parietal Lobule, Superior,Parietal Lobules,Parietal Lobules, Superior,Parietal Regions,Posterior Paracentral Lobules,Posterior Parietal Cortices,Precuneus Cortices,Region, Parietal,Secondary Sensorimotor Cortices,Sensorimotor Cortex, Secondary,Superior Parietal Lobules
D010841 Pia Mater The innermost layer of the three meninges covering the brain and spinal cord. It is the fine vascular membrane that lies under the ARACHNOID and the DURA MATER. Mater, Pia,Maters, Pia,Pia Maters
D002540 Cerebral Cortex The thin layer of GRAY MATTER on the surface of the CEREBRAL HEMISPHERES that develops from the TELENCEPHALON and folds into gyri and sulci. It reaches its highest development in humans and is responsible for intellectual faculties and higher mental functions. Allocortex,Archipallium,Cortex Cerebri,Cortical Plate,Paleocortex,Periallocortex,Allocortices,Archipalliums,Cerebral Cortices,Cortex Cerebrus,Cortex, Cerebral,Cortical Plates,Paleocortices,Periallocortices,Plate, Cortical
D004676 Myelin Basic Protein An abundant cytosolic protein that plays a critical role in the structure of multilamellar myelin. Myelin basic protein binds to the cytosolic sides of myelin cell membranes and causes a tight adhesion between opposing cell membranes. Golli-MBP1 Protein,Golli-MBP2 Protein,HOG5 Protein,HOG7 Protein,MBP1 Protein,MBP2 Protein,MBP3 Protein,MBP4 Protein,Myelin Basic Protein, 17.2 kDa Isoform,Myelin Basic Protein, 18.5 kDa Isoform,Myelin Basic Protein, 20.2 kDa Isoform,Myelin Basic Protein, 21.5 kDa Isoform,Myelin Basic Protein, Isoform 1,Myelin Basic Protein, Isoform 2,Myelin Basic Protein, Isoform 3,Myelin Basic Protein, Isoform 4,Myelin Basic Protein, Isoform 5,Myelin Basic Protein, Isoform 6,Myelin Basic Protein, Isoform 7,Golli MBP1 Protein,Golli MBP2 Protein
D005260 Female Females

Related Publications

Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
May 2020, Brain pathology (Zurich, Switzerland),
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
January 2007, Brain pathology (Zurich, Switzerland),
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
April 1994, Brain : a journal of neurology,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
January 2014, Handbook of clinical neurology,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
October 1972, Fortschritte der Medizin,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
August 2003, Brain : a journal of neurology,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
January 2000, Results and problems in cell differentiation,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
January 1965, Acta pathologica et microbiologica Scandinavica,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
January 1972, European neurology,
Lars Bø, and Christian A Vedeler, and Harald I Nyland, and Bruce D Trapp, and Sverre J Mørk
September 2023, Multiple sclerosis (Houndmills, Basingstoke, England),
Copied contents to your clipboard!