Pharmacodynamics and pharmacokinetics of cefoperazone and cefamandole in dogs following single dose intravenous and intramuscular administration. 2003

C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
Dipartimento di Sanitá pubblica, Patologia Animale e Igiene Veterinaria, Agripolis, Via Romea 16, (PD) 35020, Legnaro, Italy. clara.montesissa@unipd.it

The pharmacokinetics and intramuscular (i.m.) bioavailability of cefoperazone and cefamandole (20mg/kg) were investigated in dogs and the findings related to minimal inhibitory concentrations (MICs) for 90 bacterial strains isolated clinically from dogs. The MICs of cefamandole for Staphylococcus intermedius (MIC(90) 0.125 microg/mL) were lower than those of cefoperazone (MIC(90) 0.5 micro/mL) although the latter was more effective against Escherichia coli strains (MIC(90) 2.0 microg/mL vs. 4.0 microg/mL). The pharmacokinetics of the drugs after intravenous administrations were similar: a rapid distribution phase was followed by a slower elimination phase (t((1/2)lambda2) 84.0+/-21.3 min for cefoperazone and 81.4+/-9.7 min for cefamandole). The apparent volume of distribution and body clearance were 0.233 L/kg and 1.96 mL/kg/min for cefoperazone, 0.190 L/kg and 1.76 mL/kg/min for cefamandole. After i.m. administration the bioavailability and peak serum concentration of cefamandole (85.1+/-13.5% and 35.9+/-5.4 microg/mL) were significantly higher than cefoperazone (41.4+/-7.1% and 24.5+/-3.0 micog/mL), but not the serum half-lives (t(1/2el) 134.3+/-12.6 min for cefoperazone and 145.4+/-12.3 min for cefamandole). The time above MIC(90) indicated that cefamandole can be administered once daily to dogs for the treatment of staphylococcal infections (T>MIC for S. intermedius 23.8+/-0.3 and for Staphylococcus aureus 21.6+/-0.6h).

UI MeSH Term Description Entries
D007262 Infusions, Intravenous The long-term (minutes to hours) administration of a fluid into the vein through venipuncture, either by letting the fluid flow by gravity or by pumping it. Drip Infusions,Intravenous Drip,Intravenous Infusions,Drip Infusion,Drip, Intravenous,Infusion, Drip,Infusion, Intravenous,Infusions, Drip,Intravenous Infusion
D007273 Injections, Intramuscular Forceful administration into a muscle of liquid medication, nutrient, or other fluid through a hollow needle piercing the muscle and any tissue covering it. Intramuscular Injections,Injection, Intramuscular,Intramuscular Injection
D008297 Male Males
D008826 Microbial Sensitivity Tests Any tests that demonstrate the relative efficacy of different chemotherapeutic agents against specific microorganisms (i.e., bacteria, fungi, viruses). Bacterial Sensitivity Tests,Drug Sensitivity Assay, Microbial,Minimum Inhibitory Concentration,Antibacterial Susceptibility Breakpoint Determination,Antibiogram,Antimicrobial Susceptibility Breakpoint Determination,Bacterial Sensitivity Test,Breakpoint Determination, Antibacterial Susceptibility,Breakpoint Determination, Antimicrobial Susceptibility,Fungal Drug Sensitivity Tests,Fungus Drug Sensitivity Tests,Sensitivity Test, Bacterial,Sensitivity Tests, Bacterial,Test, Bacterial Sensitivity,Tests, Bacterial Sensitivity,Viral Drug Sensitivity Tests,Virus Drug Sensitivity Tests,Antibiograms,Concentration, Minimum Inhibitory,Concentrations, Minimum Inhibitory,Inhibitory Concentration, Minimum,Inhibitory Concentrations, Minimum,Microbial Sensitivity Test,Minimum Inhibitory Concentrations,Sensitivity Test, Microbial,Sensitivity Tests, Microbial,Test, Microbial Sensitivity,Tests, Microbial Sensitivity
D002435 Cefamandole Semisynthetic wide-spectrum cephalosporin with prolonged action, probably due to beta-lactamase resistance. It is used also as the nafate. Cephamandole,Compound 83405
D002438 Cefoperazone Semisynthetic broad-spectrum cephalosporin with a tetrazolyl moiety that is resistant to beta-lactamase. It may be used to treat Pseudomonas infections. Cefobid,Cefoperazon,Cefoperazone Sodium,Cefoperazone Sodium Salt,Céfobis,T-1551,T1551,Salt, Cefoperazone Sodium,Sodium Salt, Cefoperazone,Sodium, Cefoperazone,T 1551
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D005260 Female Females
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000900 Anti-Bacterial Agents Substances that inhibit the growth or reproduction of BACTERIA. Anti-Bacterial Agent,Anti-Bacterial Compound,Anti-Mycobacterial Agent,Antibacterial Agent,Antibiotics,Antimycobacterial Agent,Bacteriocidal Agent,Bacteriocide,Anti-Bacterial Compounds,Anti-Mycobacterial Agents,Antibacterial Agents,Antibiotic,Antimycobacterial Agents,Bacteriocidal Agents,Bacteriocides,Agent, Anti-Bacterial,Agent, Anti-Mycobacterial,Agent, Antibacterial,Agent, Antimycobacterial,Agent, Bacteriocidal,Agents, Anti-Bacterial,Agents, Anti-Mycobacterial,Agents, Antibacterial,Agents, Antimycobacterial,Agents, Bacteriocidal,Anti Bacterial Agent,Anti Bacterial Agents,Anti Bacterial Compound,Anti Bacterial Compounds,Anti Mycobacterial Agent,Anti Mycobacterial Agents,Compound, Anti-Bacterial,Compounds, Anti-Bacterial

Related Publications

C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
January 1980, Clinical therapeutics,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
April 2002, Veterinary anaesthesia and analgesia,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
January 2000, American journal of veterinary research,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
May 2017, American journal of veterinary research,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
September 2020, Journal of veterinary pharmacology and therapeutics,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
July 2005, Veterinary journal (London, England : 1997),
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
September 2021, Clinical pharmacology in drug development,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
January 2000, American journal of veterinary research,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
January 2003, European neurology,
C Montesissa, and R Villa, and P Anfossi, and R Zanoni, and S Carli
February 1990, American journal of veterinary research,
Copied contents to your clipboard!